cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A002542 Number of two-valued complete Post functions of n variables.

Original entry on oeis.org

0, 2, 56, 16256, 1073709056, 4611686016279904256, 85070591730234615856620279821087277056, 28948022309329048855892746252171976963147354982949671778132708698262398304256
Offset: 1

Views

Author

Keywords

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A002543.

Programs

  • Magma
    [2^(2^n-2)-2^(2^(n-1)-1): n in [1..10]]; // Vincenzo Librandi, Mar 24 2014
    
  • Mathematica
    Table[(2^(2^n - 2) - 2^(2^(n - 1) - 1)), {n, 1, 10}] (* Vincenzo Librandi, Mar 24 2014 *)
  • PARI
    a(n) = 2^(2^n-2)-2^(2^(n-1)-1) \\ Felix Fröhlich, Jun 01 2019

Formula

a(n) = 2^(2^n-2) - 2^(2^(n-1)-1). - Sean A. Irvine, Mar 23 2014

Extensions

a(8) from Sean A. Irvine, Mar 23 2014

A002857 Number of Post functions of n variables.

Original entry on oeis.org

1, 3, 20, 996, 9333312, 6406603084568576, 16879085743296493582043922521915392, 717956902513121252476003434439730211917452457474409186632352788205535232
Offset: 1

Views

Author

Keywords

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • Roger F. Wheeler, Complete propositional connectives. Z. Math. Logik Grundlagen Math. 7, 1961, 185-198.

Crossrefs

Equals A000612/2 and A003180/4.

Programs

  • Maple
    b:= proc(n, i, l) `if`(n=0, 2^(w-> add(mul(2^igcd(t, l[h]),
          h=1..nops(l)), t=1..w)/w)(ilcm(l[])), `if`(i<1, 0,
          add(b(n-i*j, i-1, [l[], i$j])/j!/i^j, j=0..n/i)))
        end:
    a:= n-> b(n$2, [])/4:
    seq(a(n), n=1..8);  # Alois P. Heinz, Aug 14 2019
  • Mathematica
    b[n_, i_, l_] := If[n==0, 2^Function[w, Sum[Product[2^GCD[t, l[[h]]], {h, 1, Length[l]}], {t, 1, w}]/w][LCM @@ l], If[i < 1, 0, Sum[b[n - i j, i-1, Join[l, Table[i, {j}]]]/j!/i^j, {j, 0, n/i}]]];
    a[n_] := b[n, n, {}]/4;
    Array[a, 8] (* Jean-François Alcover, Oct 27 2020, after Alois P. Heinz *)

Formula

Conjecture: a(n) = A055621(n) - A055152(n). - R. J. Mathar, Oct 14 2022

Extensions

More terms from Vladeta Jovovic, Feb 23 2000

A262546 Number of Post functions of n variables which fail to satisfy Post's second condition.

Original entry on oeis.org

1, 1, 4, 16, 544
Offset: 1

Views

Author

N. J. A. Sloane, Oct 06 2015

Keywords

Crossrefs

Equals A002857 - A002543.

A262547 Nearest integer to 2^(2^n)/(4*n!).

Original entry on oeis.org

1, 2, 11, 683, 8947849, 6405119470038039, 16879085660760836481318184892448820, 717956902513121251386228825698709746114025202539934052824017757985572480
Offset: 1

Views

Author

N. J. A. Sloane, Oct 06 2015

Keywords

Crossrefs

An approximation to A002857.

A262548 Nearest integer to 2^(2^(n-1))/(2*n!).

Original entry on oeis.org

1, 1, 1, 5, 273, 2982616, 1830034134296583, 4219771415190209120329546223112205, 159545978336249166974717516821935499136450045008874233960892835107904996
Offset: 1

Views

Author

N. J. A. Sloane, Oct 06 2015

Keywords

Crossrefs

An approximation to A262546.
Showing 1-5 of 5 results.