A002941 Arrays of dumbbells.
1, 7, 29, 94, 263, 667, 1577, 3538, 7622, 15900, 32314, 64274, 125561, 241569, 458715, 861242, 1601081, 2950693, 5396209, 9801012, 17692092, 31759800, 56727588, 100861716, 178585489, 314995915, 553650761, 969967510, 1694235803
Offset: 1
References
- I. P. Goulden and D. M. Jackson, Combinatorial Enumeration, Wiley, N.Y., 1983,(2.3.14).
- R. C. Grimson, Exact formulas for 2 x n arrays of dumbbells, J. Math. Phys., 15 (1974), 214-216.
- R. B. McQuistan and S. J. Lichtman, Exact recursion relation for 2 x N arrays of dumbbells, J. Math. Phys., 11 (1970), 3095-3099.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..1000
- R. C. Grimson, Exact formulas for 2 x n arrays of dumbbells, J. Math. Phys., 15.2 (1974), 214-216. (Annotated scanned copy)
- Index entries for linear recurrences with constant coefficients, signature (5,-7,-2,10,-2,-5,1,1).
Programs
-
Haskell
a002941 n = a002941_list !! (n-1) a002941_list = 1 : 7 : 29 : zipWith (+) (zipWith (-) (map (* 2) $ drop 2 a002941_list) a002941_list) (drop 2 $ zipWith (+) (tail a002940_list) a002940_list) -- Reinhard Zumkeller, Jan 18 2014
-
Magma
m:=30; R
:=PowerSeriesRing(Integers(), m); Coefficients(R!( (1+x)^2/((1-x-x^2)^3*(1-x)^2) )); // G. C. Greubel, Jan 31 2019 -
Mathematica
CoefficientList[(1+x)^2/((1-x-x^2)^3*(1-x)^2) + O[x]^30, x] (* Jean-François Alcover, Jul 31 2018 *) LinearRecurrence[{5,-7,-2,10,-2,-5,1,1},{1,7,29,94,263,667,1577,3538},30] (* Harvey P. Dale, Aug 29 2021 *)
-
PARI
x='x+O('x^30); Vec((1+x)^2/((1-x-x^2)^3*(1-x)^2)) \\ Altug Alkan, Jul 31 2018
-
Sage
((1+x)^2/((1-x-x^2)^3*(1-x)^2)).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, Jan 31 2019
Extensions
More terms from Henry Bottomley, Jun 02 2000