cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 14 results. Next

A180277 a(n) = A002952(n) + A002953(n).

Original entry on oeis.org

240, 2400, 40320, 72576, 94080, 120960, 141120, 311040, 403200, 483840, 483840, 725760, 673920, 1010880, 1209600, 1497600, 1411200, 1612800, 1747200, 2246400, 2177280, 2371200, 2449440, 2419200, 2620800, 2903040, 3144960, 3110400
Offset: 1

Views

Author

Jonathan Vos Post, Aug 23 2010

Keywords

Examples

			a(1) = 114 + 126 = 240 = 2^4 * 3 * 5.
a(2) = 1140 + 1260 = 2400 = 2^5 * 3 * 5^2.
a(10) = a(11) - why?
		

Crossrefs

Formula

a(n) = A002952(n) + A002953(n).
{(j+k) such that sigma*(j) = sigma*(k) = j+k, where sigma*(n) is the unitary divisor function A034448}.

Extensions

Extended by R. J. Mathar, Aug 26 2010
Shorter name using given formula from Joerg Arndt, Jul 29 2024

A063991 Unitary amicable numbers.

Original entry on oeis.org

114, 126, 1140, 1260, 18018, 22302, 32130, 40446, 44772, 49308, 56430, 64530, 67158, 73962, 142310, 168730, 180180, 197340, 223020, 241110, 242730, 286500, 296010, 308220, 365700, 429750, 462330, 548550, 591030, 618570, 669900, 671580, 739620, 785148, 815100, 827652, 827700, 932100
Offset: 1

Views

Author

N. J. A. Sloane, Sep 18 2001

Keywords

Comments

From Amiram Eldar, Mar 09 2024: (Start)
The concept of unitary amicable numbers was introduced by Wall (1970), who proved that both members of a pair are either odd or even, and found 610 pairs (only 592 were correct, as found by te Riele, 1978).
Hagis (1971) calculated the first 19 pairs (the terms below 10^6).
Najar (1995) calculated the first 185 pairs (terms whose smaller member is below 10^8). (End)

References

  • Mariano Garcia, New unitary amicable couples, J. Recreational Math., Vol. 17, No. 1 (1984-5), pp. 32-35.
  • M. Lal, G. Tiller, and T. Summers, Unitary sociable numbers, Proceedings of the Second Manitoba Conference on Numerical Mathematics, Congressus Numerantium No. 7, 1972, pp. 211-216.
  • Clifford A. Pickover, The Math Book, Sterling, NY, 2009; see p. 90.
  • James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, page 148.

Crossrefs

Union of A002952 and A002953.

Programs

  • PARI
    f(n) = sumdiv(n, d, if(gcd(d, n/d)==1, d)) - n;
    isok1(n) = iferr(f(n) == n, E, 0);
    isok2(n) = iferr(f(f(n)) == n, E, 0);
    isok(n) = isok2(n) && !isok1(n); \\ Michel Marcus, Sep 29 2018

Extensions

More terms from Michel Marcus, Sep 29 2018

A002952 Smaller of unitary amicable pair.

Original entry on oeis.org

114, 1140, 18018, 32130, 44772, 56430, 67158, 142310, 180180, 197340, 241110, 296010, 308220, 462330, 591030, 669900, 671580, 785148, 815100, 1004850, 1077890, 1080150, 1156870, 1177722, 1222650, 1281540, 1475810, 1511930, 1571388
Offset: 1

Views

Author

N. J. A. Sloane; extended Nov 24 2005

Keywords

Comments

I proved the following facts: (a) If (m,n) is a unitary amicable pair such that mod(m,4)= mod(n,4)=2 and 5 doesn't divide m*n then (10*m,10*n) is a unitary amicable pair. (b) If (m,n) is a unitary amicable pair such that m/12 and n/12 are natural numbers and gcd(m/12,12)=gcd(n/12,12)=1 then (3/2*m,3/2*n) is a unitary amicable pair. - Farideh Firoozbakht, Nov 27 2005

Examples

			(114,126) is a unitary amicable pair: 114 has unitary divisors 1, (2,57), (3,38) and (6,19), apart from 114 itself. Their sum is 126, whose unitary divisors < 126 are 1, (2,63), (7,18), (9,14) whose sum is 114.
		

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Mathematica
    uDivisors[n_] := Select[Divisors[n], # < n && GCD[#, n/#] == 1 & ]; mate[n_] := If[m = Total[uDivisors[n]]; n == Total[uDivisors[m]], m, 0]; Reap[Do[If[n < mate[n], Print[n]; Sow[n]], {n, 2, 2000000}]][[2, 1]] (* Jean-François Alcover, Jun 12 2012 *)

A324709 Larger of tri-unitary amicable numbers pair: numbers (m, n) such that tsigma(m) = tsigma(n) = m + n, where tsigma(n) is the sum of the tri-unitary divisors of n (A324706).

Original entry on oeis.org

126, 846, 1260, 8460, 11760, 10856, 14595, 17700, 49308, 83142, 62700, 71145, 73962, 83904, 107550, 88730, 131100, 168730, 149952, 196650, 203432, 306612, 365700, 399592, 419256, 548550, 721962, 669688, 831420, 686072, 691256, 712216, 652664, 661824, 827700
Offset: 1

Views

Author

Amiram Eldar, Mar 11 2019

Keywords

Comments

The terms are ordered according to their lesser counterparts (A324708).

Examples

			126 is in the sequence since it is the larger of the amicable pair (114, 126): tsigma(114) = tsigma(126) = 114 + 126.
		

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := If[e == 3, (p^4-1)/(p-1), If[e==6, (p^8-1)/(p^2-1), p^e+1]]; tsigma[1]=1; tsigma[n_]:= Times @@ f @@@ FactorInteger[n]; s[n_] := tsigma[n] - n; seq={}; Do[m=s[n]; If[m>n && s[m]==n, AppendTo[seq, m]] ,{n,1,700000}]; seq

A348344 Larger member of a noninfinitary amicable pair: numbers (k, m) such that nisigma(k) = m and nisigma(m) = k, where nisigma(k) is the sum of the noninfinitary divisors of k (A348271).

Original entry on oeis.org

448, 2032, 8128, 7168, 24384, 41984, 130048, 41940480, 102222432, 221316608, 34359738352
Offset: 1

Views

Author

Amiram Eldar, Oct 13 2021

Keywords

Comments

The terms are ordered according to their smaller counterparts (A348343).

Examples

			448 is a term since A348271(448) = 336 and A348271(336) = 448.
		

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := Module[{b = IntegerDigits[e, 2], m}, m = Length[b]; Product[If[b[[j]] > 0, 1 + p^(2^(m - j)), 1], {j, 1, m}]]; isigma[1] = 1; isigma[n_] := Times @@ f @@@ FactorInteger[n]; s[n_] := DivisorSigma[1,n] - isigma[n]; seq={}; Do[m=s[n]; If[m>n && s[m]==n, AppendTo[seq, m]], {n,1,10^4}]; seq

A357496 Greater of a pair of amicable numbers k < m such that s(k) = m and s(m) = k, where s(k) = A162296(k) - k is the sum of aliquot divisors of k that have a square factor.

Original entry on oeis.org

1136, 11696, 22256, 25472, 43424, 73664, 131355, 304336, 267968, 492608, 612704, 674920, 640305, 788697, 691292, 705344, 723392, 813728, 809776, 1117395, 1258335, 1559696, 1518570, 1598368, 1821376, 2218250, 2058944, 2678752, 2744288, 2765024, 2848864, 2610656, 3134224
Offset: 1

Views

Author

Amiram Eldar, Oct 01 2022

Keywords

Comments

Analogous to amicable numbers (A002025 and A002046) with nonsquarefree divisors.
The terms are ordered according to their lesser counterparts (A357495).
Both members of each pair are necessarily nonsquarefree numbers.

Examples

			1136 is a term since s(1136) = 880 and s(880) = 1136.
		

Crossrefs

Programs

  • Mathematica
    s[n_] := Module[{f = FactorInteger[n], p, e}, p = f[[;; , 1]]; e = f[[;; , 2]]; Times @@ ((p^(e + 1) - 1)/(p - 1)) - Times @@ (p + 1) - n]; seq = {}; Do[m = s[n]; If[m > n && s[m] == n, AppendTo[seq, m]], {n, 2, 3*10^6}]; seq

A111904 Number of unitary amicable pairs in which the smallest member has n digits.

Original entry on oeis.org

0, 0, 1, 1, 5, 12, 59, 107, 269, 641, 1457, 3553
Offset: 1

Views

Author

N. J. A. Sloane, Nov 24 2005

Keywords

Crossrefs

Extensions

The next term, a(13), is at least 6664.

A306873 Larger of augmented unitary amicable pair.

Original entry on oeis.org

7336455, 41337555, 110691295, 108212055, 154646206, 313439511, 6400149855, 9971007915, 10049576691, 9849706755, 12125842995, 12180547995, 14064001666, 18225635506, 26623431835, 20500208806, 23746912995, 23952459706, 43137954706, 56039259255, 99517314526, 125782774755
Offset: 1

Views

Author

Amiram Eldar, Mar 14 2019

Keywords

Comments

A pair m < n is an augmented unitary amicable pair if usigma(m) = usigma(n) = m + n - 1, where usigma(n) is the sum of unitary divisors of n (A034460).
The terms are ordered according to their lesser counterparts (A306872).

Examples

			7336455 is in the sequence since it is the larger of the amicable pair (6224890, 7336455): usigma(6224890) = usigma(7336455) = 13561344 = 6224890 + 7336455 - 1.
		

Crossrefs

Programs

  • Mathematica
    us[n_] := Times @@ (1 + Power @@@ FactorInteger[n]) - n;  s={}; Do[m = us[n] + 1; If[m > n && us[m] == n - 1, AppendTo[s, m]], {n, 1, 10^9}]; s

A306876 Larger of reduced unitary amicable pair.

Original entry on oeis.org

175742294, 6263852385, 16082297385, 18625120185, 32553626105, 38947446285, 37626449685, 41194817265, 103052922665, 87988279533, 103552755405, 126755126589, 131943742994, 192245655405, 226960409585, 181521732405, 502566224565, 399451768365, 403080683565, 461943100905
Offset: 1

Views

Author

Amiram Eldar, Mar 14 2019

Keywords

Comments

A pair m < n is a reduced unitary amicable pair if usigma(m) = usigma(n) = m + n + 1, where usigma(n) is the sum of unitary divisors of n (A034460). The terms are ordered according to their lesser counterparts (A306875).

Examples

			175742294 is in the sequence since it is the larger of the amicable pair (172622505, 175742294): usigma(172622505) = usigma(175742294) = 348364800 = 172622505 + 175742294 + 1.
		

Crossrefs

Programs

  • Mathematica
    us[n_] := Times @@ (1 + Power @@@ FactorInteger[n]) - n;  s={}; Do[m = us[n] - 1; If[m > n && us[m] == n + 1, AppendTo[s, m]], {n, 1, 10^9}]; s

A333930 Larger of recursive amicable numbers pair: numbers m < k such that m = s(k) and k = s(m), where s(k) = A333926(k) - k is the sum of proper recursive divisors of k.

Original entry on oeis.org

284, 378, 2924, 4584, 5564, 16632, 16728, 28752, 30912, 53692, 76084, 69552, 87633, 124155, 139815, 179118, 168730, 225096, 202444, 256338, 245904, 266568, 365084, 389924, 320016, 430402, 391656, 353616, 387720, 393528, 486178, 525915, 555216, 642720, 814698, 682896
Offset: 1

Views

Author

Amiram Eldar, Apr 10 2020

Keywords

Comments

The terms are ordered according to their lesser counterparts (A333929).

Examples

			284 is a terms since A333926(284) - 284 = 220 and A333926(220) - 220 = 284.
		

Crossrefs

Analogous sequences: A002046, A002953 (unitary), A126166 (exponential), A126170 (infinitary), A292981 (bi-unitary).

Programs

  • Mathematica
    recDivQ[n_, 1] = True; recDivQ[n_, d_] := recDivQ[n, d] = Divisible[n, d] && AllTrue[FactorInteger[d], recDivQ[IntegerExponent[n, First[#]], Last[#]] &]; recDivs[n_] := Select[Divisors[n], recDivQ[n, #] &]; f[p_, e_] := 1 + Total[p^recDivs[e]]; recDivSum[1] = 1; recDivSum[n_] := Times @@ (f @@@ FactorInteger[n]); s[n_] := recDivSum[n] - n; seq = {}; Do[m = s[n]; If[m > n && s[m] == n, AppendTo[seq, m]], {n, 1, 10^5}]; seq
Showing 1-10 of 14 results. Next