cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A002973 a(n) is half of the even member of {x,y}, where x^2 + y^2 is the n-th prime of the form 4i+1.

Original entry on oeis.org

1, 1, 2, 1, 3, 2, 1, 3, 4, 4, 2, 5, 5, 4, 2, 5, 3, 1, 5, 6, 7, 1, 4, 2, 8, 5, 7, 8, 1, 6, 7, 8, 9, 4, 9, 5, 3, 10, 10, 7, 6, 10, 2, 5, 11, 10, 5, 7, 10, 12, 4, 12, 9, 8, 2, 11, 3, 6, 13, 13, 11, 1, 13, 10, 6, 11, 13, 14, 7, 5, 9, 2, 3, 8, 10, 12, 5, 14, 2, 3, 14, 11, 15, 16, 16, 5, 15, 1, 8, 11
Offset: 1

Views

Author

Keywords

Comments

a(n) is odd iff x^2 + y^2 == 5 (mod 8). [Vladimir Shevelev, Jul 12 2009]
A002972(n)^2 + 4*a(n)^2 = A002144(n); A002331(n+1) = Min(A002972(n),2*a(n)) and A002330(n+1) = Max(A002972(n),2*a(n)). [Reinhard Zumkeller, Feb 16 2010]

Examples

			The 3rd prime of the form 4i+1 is 17 = 1^2 + 4^2, so a(3) = 4/2 = 2.
		

References

  • E. Kogbetliantz and A. Krikorian, Handbook of First Complex Prime Numbers, Gordon and Breach, NY, 1971, p. 243.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Mathematica
    pmax = 1000; k[p_] := Module[{k, m}, k /. ToRules[Reduce[k>0 && m >= 0 && (2k)^2 + (2m+1)^2 == p, {k, m}, Integers]]]; For[n=1; p=5, pJean-François Alcover, Feb 26 2016 *)
  • PARI
    \\ use function decomp2sq from A002972
    forprime (p=5, 1000, if (p%4==1, print1(select(x->!(x%2),decomp2sq(p))[1]/2,", "))) \\ Hugo Pfoertner, Aug 27 2022

Formula

a(n) = Min(A173331(n), A002144(n) - A173331(n)) / 2. [Reinhard Zumkeller, Feb 16 2010]

Extensions

Better description from Jud McCranie, Mar 05 2003