A002986 Number of non-cyclic hydrocarbons with n carbon atoms (excluding stereoisomers).
1, 3, 4, 12, 27, 84, 247, 826, 2777, 9868, 35579, 131847, 495671, 1893819, 7320954, 28619581, 112923053, 449343946, 1801330288, 7269849395, 29517342098, 120507480668, 494449558111, 2038073860257, 8436185990286, 35055744550563, 146195133355612, 611723431211193
Offset: 1
Keywords
Examples
a(3) = 4 because there are 4 non-cyclic structures that can be drawn with 3 carbons (propane, propene, propyne, and allene). - _David Consiglio, Jr._, May 15 2014
References
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..500
- Sean A. Irvine, java program
- R. C. Read, Some recent results in chemical enumeration, Preprint, circa 1972. (Annotated scanned copy)
- R. C. Read, Some recent results in chemical enumeration, Lect. Notes Math. 303 (1972), 243-259.
- Wikipedia, Graph
Crossrefs
Cf. A000602 (restriction to alkanes).
Programs
-
PARI
\\ here S is MSET_k comb class of g S(g,n,k)={polcoeff(exp( sum(i=1, k, (y^i + O(y*y^k))*subst(g + O(x*x^(n\i)), x, x^i)/i )), k, y) + O(x*x^n)} R(n)={my(f,g,h); f=g=h=O(x); for(n=1, n, h = x*(1+f); g = h + x*(S(f,n,2) + g); f = g + x*(S(f,n,3) + f*g + h)); [f,g,h]} seq(n)={my(t=R(n), f=t[1], g=t[2], h=t[3]); Vec(f + x*(S(f, n, 4) + g*S(f, n, 2) + S(g, n, 2) + f*h) + (subst(f+g+h+O(x*x^(n\2)), x, x^2) - f^2 - g^2 - h^2)/2)} \\ Andrew Howroyd, May 26 2018
-
nauty
geng -c -D4 ${n} $[${n}-1]:$[${n}-1] -q | multig -m3 -D4 -u
Formula
a(n) ~ c * d^n / n^(5/2), where d = 4.576467424512811226430711636719246756... and c = 0.84315686601314832608482486521039... - Vaclav Kotesovec, Feb 11 2019
Extensions
Better definition from Sergio Pimentel, Apr 28 2006
a(11) (computed using Nauty) from Vesa Linja-aho (vesa.linja-aho(AT)tkk.fi), Apr 24 2008
a(12)-a(13) (computed using Molgen 3.5) from David Consiglio, Jr., May 15 2014
Existing terms verified and a(14)-a(16) from Sean A. Irvine, Dec 22 2014
a(17)-a(19) from Sean A. Irvine, Dec 28 2014
a(18)-a(19) corrected and a(20)-a(24) (computed using nauty) from Sean A. Irvine, Jan 02 2015
Terms a(25) and beyond from Andrew Howroyd, May 26 2018
Comments