cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A003003 Size of the largest subset of the numbers [1...n] which doesn't contain a 4-term arithmetic progression.

Original entry on oeis.org

1, 2, 3, 3, 4, 5, 5, 6, 7, 8, 8, 8, 9, 9, 10, 10, 11, 11, 12, 12, 13, 13, 14, 14, 15, 15, 16, 17, 17, 18, 18, 18, 19, 20, 20, 20, 21, 21, 21, 22, 22, 22, 23, 23, 24, 24, 24, 25, 25, 26, 26, 26, 27, 28, 28, 28, 28, 29, 29, 30, 30, 30, 30, 31, 31, 32, 32, 33, 33, 34, 34, 34
Offset: 1

Views

Author

Keywords

Comments

These subsets have been called 4-free sequences.
Szemeredi's theorem for arithmetic progressions of length 4 asserts that a(n) is o(n) as n -> infinity. - Doron Zeilberger, Mar 26 2008
False g.f. (z^12 + 1 - z^11 - z^10 + z^8 - z^6 + z^5 - z^3 + z)/((z+1)*(z-1)^2) was conjectured by Simon Plouffe in his 1992 dissertation, but in fact is wrong (cf. A136746).

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

A selection of sequences related to "no three-term arithmetic progression": A003002, A003003, A003278, A004793, A005047, A005487, A033157, A065825, A092482, A093678, A093679, A093680, A093681, A093682, A094870, A101884, A101886, A101888, A140577, A185256, A208746, A229037.

Extensions

a(52)-a(72) from Rob Pratt, Jul 09 2015