cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A229037 The "forest fire": sequence of positive integers where each is chosen to be as small as possible subject to the condition that no three terms a(j), a(j+k), a(j+2k) (for any j and k) form an arithmetic progression.

Original entry on oeis.org

1, 1, 2, 1, 1, 2, 2, 4, 4, 1, 1, 2, 1, 1, 2, 2, 4, 4, 2, 4, 4, 5, 5, 8, 5, 5, 9, 1, 1, 2, 1, 1, 2, 2, 4, 4, 1, 1, 2, 1, 1, 2, 2, 4, 4, 2, 4, 4, 5, 5, 8, 5, 5, 9, 9, 4, 4, 5, 5, 10, 5, 5, 10, 2, 10, 13, 11, 10, 8, 11, 13, 10, 12, 10, 10, 12, 10, 11, 14, 20, 13
Offset: 1

Views

Author

Jack W Grahl, Sep 11 2013

Keywords

Comments

Added name "forest fire" to make it easier to locate this sequence. - N. J. A. Sloane, Sep 03 2019
This sequence and A235383 and A235265 were winners in the best new sequence contest held at the OEIS Foundation booth at the 2014 AMS/MAA Joint Mathematics Meetings. - T. D. Noe, Jan 20 2014
See A236246 for indices n such that a(n)=1. - M. F. Hasler, Jan 20 2014
See A241673 for indices n such that a(n)=2^k. - Reinhard Zumkeller, Apr 26 2014
The graph (for up to n = 10000) has an eerie similarity (why?) to the distribution of rising smoke particles subjected to a lateral wind, and where the particles emanate from randomly distributed burning areas in a fire in a forest or field. - Daniel Forgues, Jan 21 2014
The graph (up to n = 100000) appears to have a fractal structure. The dense areas are not random but seem to repeat, approximately doubling in width and height each time. - Daniel Forgues, Jan 21 2014
a(A241752(n)) = n and a(m) != n for m < A241752(n). - Reinhard Zumkeller, Apr 28 2014
The indices n such that a(n) = 1 are given by A236313 (relative spacing) up to 19 terms, and A003278 (directly) up to 20 terms. If just placing ones, the 21st 1 would be n=91. The sequence A003278 fails at n=91 because the numbers filling the gaps create an arithmetic progression with a(27)=9, a(59)=5 and a(91)=1. Additionally, if you look at indices n starting at the first instance of 4 or 5, A003278/A236313 provide possible indices for a(n)=4 or a(n)=5, with some indexes instead filled by numbers < (4,5). A003278/A236313 also fail to predict indices for a(n)=4 or a(n)=5 by the ~20th term. - Daniel Putt, Sep 29 2022

Crossrefs

Cf. A094870, A362942 (partial sums).
For a variant see A309890.
A selection of sequences related to "no three-term arithmetic progression": A003002, A003003, A003278, A004793, A005047, A005487, A033157, A065825, A092482, A093678, A093679, A093680, A093681, A093682, A094870, A101884, A101886, A101888, A140577, A185256, A208746, A229037.

Programs

  • Haskell
    import Data.IntMap (empty, (!), insert)
    a229037 n = a229037_list !! (n-1)
    a229037_list = f 0 empty  where
       f i m = y : f (i + 1) (insert (i + 1) y m) where
         y = head [z | z <- [1..],
                       all (\k -> z + m ! (i - k) /= 2 * m ! (i - k `div` 2))
                           [1, 3 .. i - 1]]
    -- Reinhard Zumkeller, Apr 26 2014
    
  • Mathematica
    a[1] = 1; a[n_] := a[n] = Block[{z = 1}, While[Catch[ Do[If[z == 2*a[n-k] - a[n-2*k], Throw@True], {k, Floor[(n-1)/2]}]; False], z++]; z]; a /@ Range[100] (* Giovanni Resta, Jan 01 2014 *)
  • PARI
    step(v)=my(bad=List(),n=#v+1,t); for(d=1,#v\2,t=2*v[n-d]-v[n-2*d]; if(t>0, listput(bad,t))); bad=Set(bad); for(i=1,#bad, if(bad[i]!=i, return(i))); #bad+1
    first(n)=my(v=List([1])); while(n--, listput(v, step(v))); Vec(v) \\ Charles R Greathouse IV, Jan 21 2014
    
  • Python
    A229037_list = []
    for n in range(10**6):
        i, j, b = 1, 1, set()
        while n-2*i >= 0:
            b.add(2*A229037_list[n-i]-A229037_list[n-2*i])
            i += 1
            while j in b:
                b.remove(j)
                j += 1
        A229037_list.append(j) # Chai Wah Wu, Dec 21 2014

Formula

a(n) <= (n+1)/2. - Charles R Greathouse IV, Jan 21 2014

A003002 Size of the largest subset of the numbers [1...n] which does not contain a 3-term arithmetic progression.

Original entry on oeis.org

0, 1, 2, 2, 3, 4, 4, 4, 4, 5, 5, 6, 6, 7, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9, 10, 10, 11, 11, 11, 11, 12, 12, 13, 13, 13, 13, 14, 14, 14, 14, 15, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 17, 17, 17, 18, 18, 18, 18, 19, 19, 19, 19, 19, 20, 20, 20, 20, 20, 20, 20, 20, 21, 21, 21, 22, 22, 22, 22
Offset: 0

Views

Author

Keywords

Comments

"Sequences containing no 3-term arithmetic progressions" is another phrase people may be searching for.
a(n) = size of largest subset of [1..n] such that no term is the average of any two others. These are also called non-averaging sets, or 3-free sequences. - N. J. A. Sloane, Mar 01 2012
More terms of this sequence can be found directly from A065825, because A003002(n) (this sequence) = the integer k such that A065825(k) <= n < A065825(k+1). - Shreevatsa R, Oct 18 2009

Examples

			Examples from Dybizbanski (2012) (includes earlier examples found by other people):
n, a(n), example of an optimal subset:
0, 0, []
1, 1, [1]
2, 2, [1, 2]
4, 3, [1, 2, 4]
5, 4, [1, 2, 4, 5]
9, 5, [1, 2, 4, 8, 9]
11, 6, [1, 2, 4, 5, 10, 11]
13, 7, [1, 2, 4, 5, 10, 11, 13]
14, 8, [1, 2, 4, 5, 10, 11, 13, 14]
20, 9, [1, 2, 6, 7, 9, 14, 15, 18, 20]
24, 10, [1, 2, 5, 7, 11, 16, 18, 19, 23, 24]
26, 11, [1, 2, 5, 7, 11, 16, 18, 19, 23, 24, 26]
30, 12, [1, 3, 4, 8, 9, 11, 20, 22, 23, 27, 28, 30]
32, 13, [1, 2, 4, 8, 9, 11, 19, 22, 23, 26, 28, 31, 32]
36, 14, [1, 2, 4, 8, 9, 13, 21, 23, 26, 27, 30, 32, 35, 36]
40, 15, [1, 2, 4, 5, 10, 11, 13, 14, 28, 29, 31, 32, 37, 38, 40]
41, 16, [1, 2, 4, 5, 10, 11, 13, 14, 28, 29, 31, 32, 37, 38, 40, 41]
51, 17, [1, 2, 4, 5, 10, 13, 14, 17, 31, 35, 37, 38, 40, 46, 47, 50, 51]
54, 18, [1, 2, 5, 6, 12, 14, 15, 17, 21, 31, 38, 39, 42, 43, 49, 51, 52, 54]
58, 19, [1, 2, 5, 6, 12, 14, 15, 17, 21, 31, 38, 39, 42, 43, 49, 51, 52, 54, 58]
63, 20, [1, 2, 5, 7, 11, 16, 18, 19, 24, 26, 38, 39, 42, 44, 48, 53, 55, 56, 61, 63]
71, 21, [1, 2, 5, 7, 10, 17, 20, 22, 26, 31, 41, 46, 48, 49, 53, 54, 63, 64, 68, 69, 71]
74, 22, [1, 2, 7, 9, 10, 14, 20, 22, 23, 25, 29, 46, 50, 52, 53, 55, 61, 65, 66, 68, 73, 74]
82, 23, [1, 2, 4, 8, 9, 11, 19, 22, 23, 26, 28, 31, 49, 57, 59, 62, 63, 66, 68, 71, 78, 81, 82]
		

References

  • H. L. Abbott, On a conjecture of Erdos and Straus on non-averaging sets of integers, Proc. 5th British Combinatorial Conference, 1975, pp. 1-4.
  • Bloom, T. F. (2014). Quantitative results in arithmetic combinatorics (Doctoral dissertation, University of Bristol).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • E. G. Straus, Nonaveraging sets. In Combinatorics (Proc. Sympos. Pure Math., Vol. XIX, Univ. California, Los Angeles, Calif., 1968), pp. 215-222. Amer. Math. Soc., Providence, R.I., 1971. MR0316255 (47 #4803)
  • T. Tao and V. Vu, Additive Combinatorics, Problem 10.1.3.

Crossrefs

The classical lower bound is A104406; A229037 gives a "greedy" lower bound. - N. J. A. Sloane, Apr 29 2023
Cf. A358062 (diagonal domination number for the n X n queen graph).
A selection of sequences related to "no three-term arithmetic progression": A003002, A003003, A003278, A004793, A005047, A005487, A033157, A065825, A092482, A093678, A093679, A093680, A093681, A093682, A094870, A101884, A101886, A101888, A140577, A185256, A208746, A229037.

Programs

  • Mathematica
    (* Program not suitable to compute a large number of terms *)
    a[n_] := a[n] = For[r = Range[n]; k = n, k >= 1, k--, If[AnyTrue[Subsets[r, {k}], FreeQ[#, {_, a_, _, b_, _, c_, _} /; b - a == c - b] &], Return[k]]];
    Table[Print["a(", n, ") = ", a[n]]; a[n], {n, 1, 25}] (* Jean-François Alcover, Jan 21 2018 *)
  • PARI
    ap3(v)=for(i=1,#v-2, for(j=i+2,#v, my(t=v[i]+v[j]); if(t%2==0 && setsearch(v,t/2), return(1)))); 0
    a(N)=forstep(n=N,2,-1, forvec(v=vector(n,i,[1,N]),if(!ap3(v), return(n)),2)); N \\ Charles R Greathouse IV, Apr 22 2022

Formula

Sanders proves that a(n) << n*(log log n)^5/log n. - Charles R Greathouse IV, Jan 22 2016
Bloom & Sisask prove that a(n) << n/(log n)^c for some c > 1. - Charles R Greathouse IV, Oct 11 2022

Extensions

Extended from 53 terms to 80 terms, using a simple brute-force program with some pruning, by Shreevatsa R, Oct 18 2009
See Dybizbanski (2012) for first 120 terms. - N. J. A. Sloane, Dec 17 2013
Edited by N. J. A. Sloane, Apr 12 2016
a(0)=0 prepended by Alois P. Heinz, May 14 2020

A065825 Smallest k such that n numbers may be picked in {1,...,k} with no three terms in arithmetic progression.

Original entry on oeis.org

1, 2, 4, 5, 9, 11, 13, 14, 20, 24, 26, 30, 32, 36, 40, 41, 51, 54, 58, 63, 71, 74, 82, 84, 92, 95, 100, 104, 111, 114, 121, 122, 137, 145, 150, 157, 163, 165, 169, 174, 194, 204, 209
Offset: 1

Views

Author

Ed Pegg Jr, Nov 23 2001

Keywords

Comments

"Sequences containing no 3-term arithmetic progressions" is another phrase people may be searching for. See also A003002.
Don Reble notes large gaps between a(4k) and a(4k+1).
Ed Pegg Jr conjectures the 2^k term always equals (3^k+1)/2 and calls these "unprogressive" sets. Jaroslaw Wroblewski (jwr(AT)math.uni.wroc.pl), Nov 04 2003, remarks that this conjecture is known to be false.
Further comments from Jaroslaw Wroblewski (jwr(AT)math.uni.wroc.pl), Nov 05 2003: log a(n) / log n tends to 1 was established in 1946 by Behrend. This was extended by me in the Math. Comp. paper. Using appropriately chosen intervals from B(4,9,4) and B(6,9,11) I have determined that log (2a(n)-1) / log n < log 3 / log 2 holds for n=60974 and for n=2^19 since a(60974) <= 19197041, a(524288) <= 515749566. See my web page for further bounds.
Bloom & Sisask prove that a(n) >> n (log n)^(1+c) for an absolute (small) constant c > 0. This improves the o(1) in Behrend's result that log a(n)/log n = 1 + o(1) to log log n/log n. - Charles R Greathouse IV, Aug 04 2020

Examples

			a(9) = 20 = 1 2 6 7 9 14 15 18 20
a(10) = 24 = 1 2 5 7 11 16 18 19 23 24
a(11) = 26 = 1 2 5 7 11 16 18 19 23 24 26
a(12) = 30 = 1 3 4 8 9 11 20 22 23 27 28 30 (unique)
a(13) = 32 = 1 2 4 8 9 11 19 22 23 26 28 31 32
a(14) = 36 = 1 2 4 8 9 13 21 23 26 27 30 32 35 36
a(15) = 40 = 1 2 4 5 10 11 13 14 28 29 31 32 37 38 40
a(16) = 41 = 1 2 4 5 10 11 13 14 28 29 31 32 37 38 40 41
a(17) = 51 = 1 2 4 5 10 13 14 17 31 35 37 38 40 46 47 50 51
a(18) = 54 = 1 2 5 6 12 14 15 17 21 31 38 39 42 43 49 51 52 54
a(19) = 58 = 1 2 5 6 12 14 15 17 21 31 38 39 42 43 49 51 52 54 58
a(20) = 63 = 1 2 5 7 11 16 18 19 24 26 38 39 42 44 48 53 55 56 61 63
a(21) = 71 = 1 2 5 7 10 17 20 22 26 31 41 46 48 49 53 54 63 64 68 69 71
a(22) = 74 = 1 2 7 9 10 14 20 22 23 25 29 46 50 52 53 55 61 65 66 68 73 74
a(23) = 82 = 1 2 4 8 9 11 19 22 23 26 28 31 49 57 59 62 63 66 68 71 78 81 82
a(24) = 84 = 1 3 4 8 9 16 18 21 22 25 30 37 48 55 60 63 64 67 69 76 77 81 82 84
a(25) = 92 = 1 2 6 8 9 13 19 21 22 27 28 39 58 62 64 67 68 71 73 81 83 86 87 90 92
a(26) = 95 = 1 2 4 5 10 11 22 23 25 26 31 32 55 56 64 65 67 68 76 77 82 83 91 92 94 95
a(27) = 100 = 1 3 6 7 10 12 20 22 25 26 29 31 35 62 66 68 71 72 75 77 85 87 90 91 94 96 100
		

References

  • Donald E. Knuth, Satisfiability, Fascicle 6, volume 4 of The Art of Computer Programming. Addison-Wesley, 2015, pages 135 and 190, Problem 31.
  • C. R. J. Singleton, "No Progress": Solution to Problem 2472, Journal of Recreational Mathematics, 30(4) 305 1999-2000.

Crossrefs

Cf. A003002 (three-free sequences), A003003, A003004, A003005, A003278, A005047, A225745.

Programs

  • Mathematica
    ThreeAPFree[n_, k_, a_] := Module[{d, j},
       For[d = 1, d < k/2, d ++,
        For[j = 1, j <= n - 2, j++,
         If[MemberQ[a, a[[j]] + d] && MemberQ[a, a[[j]] + 2 d],
          Return[False]]]];
       Return[True]];
    A065825[n_] := Module[{k, x, a},
      k = n;
      While[True,
       x = Subsets[Range[k], {n}];
       For[i = 1, i <= Length[x], i++,
        a = x[[i]];
        If[a[[1]] != 1 || a[[n]] != k, Continue[]];
        If[ThreeAPFree[n, k, a], Return[k]]];
       k++]]
    Table[A065825[n], {n, 1, 10}]  (* Robert Price, Mar 11 2019 *)
  • PARI
    \\ brute force
    has3AP(v)=for(i=1,#v-2,for(j=i+2,#v,my(t=(v[i]+v[j])/2);if(denominator(t)==1 && setsearch(v,t),return([v[i],t,v[j]]))));0
    a(n)=for(k=n,oo,forvec(u=vector(n,i,if(i==1,[1,1],i==k,[k,k],[2,k-1])),if(has3AP(u)==0, /* print(u); */ return(u[n])),2)) \\ Charles R Greathouse IV, Aug 04 2020

Formula

a(n) = A005047(n) + 1. - Rob Pratt, Jul 09 2015

Extensions

a(19) found by Guenter Stertenbrink in response to an A003278-based puzzle on www.mathpuzzle.com
More terms from Don Reble, Nov 25 2001
a(28)-a(32) from William Rex Marshall, Mar 24 2002
a(33) from William Rex Marshall, Nov 15 2003
a(34) from William Rex Marshall, Jan 24 2004
a(35)-a(36) (found by Gavin Theobold in 2004) communicated by William Rex Marshall, Mar 10 2007
a(37)-a(41) (from Wroblewski's web page) added by Joerg Arndt, Apr 25 2012
a(42)-a(43) from Fausto A. C. Cariboni, Sep 02 2018

A101886 Smallest natural number sequence without any length 4 equidistant arithmetic subsequences.

Original entry on oeis.org

1, 2, 3, 5, 6, 7, 9, 10, 11, 14, 15, 16, 18, 19, 20, 22, 24, 27, 28, 29, 31, 32, 35, 36, 37, 39, 41, 42, 43, 47, 48, 50, 51, 53, 55, 58, 60, 61, 63, 65, 66, 68, 70, 71, 72, 77, 78, 80, 82, 85, 86, 87, 89, 90, 91, 94, 95, 96, 98, 99, 100, 102, 103, 104, 107, 109, 110, 111, 114
Offset: 1

Views

Author

Douglas Stones (dssto1(AT)student.monash.edu.au), Dec 20 2004

Keywords

Examples

			4 is out because of 1,2,3,4. 13 is out because of 1,5,9,13.
		

Crossrefs

A selection of sequences related to "no three-term arithmetic progression": A003002, A003003, A003278, A004793, A005047, A005487, A033157, A065825, A092482, A093678, A093679, A093680, A093681, A093682, A094870, A101884, A101886, A101888, A140577, A185256, A208746, A229037.

A101888 Smallest natural number sequence without any length 5 equidistant arithmetic subsequences.

Original entry on oeis.org

1, 2, 3, 4, 6, 7, 8, 9, 11, 12, 13, 14, 16, 17, 18, 19, 22, 23, 24, 25, 27, 28, 29, 30, 32, 33, 34, 35, 37, 38, 39, 40, 43, 44, 45, 46, 48, 49, 50, 51, 53, 54, 55, 56, 58, 59, 60, 61, 64, 65, 66, 67, 69, 70, 71, 72, 74, 75, 76, 77, 79, 80, 81, 82, 86, 87, 88, 90, 91, 92, 93, 95
Offset: 1

Views

Author

Douglas Stones (dssto1(AT)student.monash.edu.au), Dec 20 2004

Keywords

Examples

			5 is out because of 1,2,3,4,5. 21 is out because of 1,6,11,16,21.
		

Crossrefs

A selection of sequences related to "no three-term arithmetic progression": A003002, A003003, A003278, A004793, A005047, A005487, A033157, A065825, A092482, A093678, A093679, A093680, A093681, A093682, A094870, A101884, A101886, A101888, A140577, A185256, A208746, A229037.

A003004 Size of the largest subset of the numbers [1..n] which does not contain a 5-term arithmetic progression.

Original entry on oeis.org

1, 2, 3, 4, 4, 5, 6, 7, 8, 8, 9, 10, 11, 12, 12, 13, 14, 15, 16, 16, 16, 16, 16, 17, 18, 18, 19, 20, 21, 21, 22, 22, 23, 24, 24, 25, 26, 27, 28, 28, 29, 30, 31, 32, 32, 32, 32, 32, 33, 33, 34, 35, 35, 36, 36, 37, 38, 39, 40, 40, 41, 42, 43, 44, 44, 45, 46, 47, 48, 48
Offset: 1

Views

Author

Keywords

Comments

These subsets have been called 5-free sequences.

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Extensions

a(51) and beyond from Fausto A. C. Cariboni, Apr 30 2018

A003005 Size of the largest subset of the numbers [1..n] which doesn't contain a 6-term arithmetic progression.

Original entry on oeis.org

1, 2, 3, 4, 5, 5, 6, 7, 8, 9, 9, 10, 11, 12, 13, 13, 14, 15, 16, 17, 17, 18, 19, 20, 21, 22, 22, 22, 23, 23, 23, 24, 25, 25, 26, 27, 28, 28, 29, 30, 31, 31, 31, 32, 33, 34, 34, 35, 36, 37, 38, 38, 38, 39, 39, 40, 40, 41, 42, 42, 43, 44, 44, 45, 46, 47, 47, 48, 48
Offset: 1

Views

Author

Keywords

Comments

These subsets have been called 6-free sequences.

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

A005048 Minimal span of set of n elements with no 4-term arithmetic progression.

Original entry on oeis.org

4, 5, 7, 8, 9, 12, 14, 16, 18, 20, 22, 24, 26, 27, 29, 32, 33, 36, 39, 42, 44, 47, 49, 52, 53, 57, 59, 63, 65, 67, 69, 73, 76, 78, 81, 83, 86, 90, 92, 96, 98, 100, 103, 104, 106, 111, 113, 119, 121, 125, 128, 131, 133, 137, 140
Offset: 4

Views

Author

Keywords

Comments

If the first appearance of n in A003003 is A003003(k) = n, then a(n) = k-1. - Robert Israel, Mar 21 2016

Examples

			Example for n=13: { 1, 2, 3, 5, 6, 8, 9, 10, 16, 17, 18, 20, 21 } with span 20.
		

Crossrefs

Extensions

Corrected and extended by David W. Wilson, May 15 1997
a(22)-a(26) from Sean A. Irvine, Mar 17 2016
a(24)-a(26) corrected by Robert Israel, Mar 20 2016
a(27) from Sean A. Irvine, Mar 20 2016
a(28)-a(34) from Robert Israel, Mar 21 2016
a(35)-a(58) from Fausto A. C. Cariboni, Jun 17 2018

A225745 Smallest k such that n numbers can be picked in {1,...,k} with no four in arithmetic progression.

Original entry on oeis.org

1, 2, 3, 5, 6, 8, 9, 10, 13, 15, 17, 19, 21, 23, 25, 27, 28, 30, 33, 34, 37, 40, 43, 45, 48, 50, 53, 54, 58, 60, 64, 66, 68, 70, 74, 77, 79, 82, 84, 87, 91
Offset: 1

Views

Author

Don Knuth, Aug 05 2013

Keywords

Examples

			a(8)=10 because of the unique solution 1 2 3 5 6 8 9 10.
		

References

  • Knuth, Donald E., Satisfiability, Fascicle 6, volume 4 of The Art of Computer Programming. Addison-Wesley, 2015, pages 135 and 190, Problem 31.

Crossrefs

This sequence is to A003003 as A065825 is to A003002.

Extensions

a(37)-a(41) from Bert Dobbelaere, Sep 16 2020

A136746 G.f.: (z^12+1-z^11-z^10+z^8-z^6+z^5-z^3+z)/((z+1)*(z-1)^2).

Original entry on oeis.org

1, 2, 3, 3, 4, 5, 5, 6, 7, 8, 8, 8, 9, 9, 10, 10, 11, 11, 12, 12, 13, 13, 14, 14, 15, 15, 16, 16, 17, 17, 18, 18, 19, 19, 20, 20, 21, 21, 22, 22, 23, 23, 24, 24, 25, 25, 26, 26, 27, 27, 28, 28, 29, 29, 30, 30, 31, 31, 32, 32, 33, 33, 34, 34, 35, 35, 36, 36, 37, 37, 38, 38, 39, 39, 40, 40
Offset: 0

Views

Author

N. J. A. Sloane, Apr 07 2008

Keywords

Comments

Simon Plouffe conjectured in 1992 that this is a g.f. for A003003 - it is not.
Showing 1-10 of 11 results. Next