cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A003002 Size of the largest subset of the numbers [1...n] which does not contain a 3-term arithmetic progression.

Original entry on oeis.org

0, 1, 2, 2, 3, 4, 4, 4, 4, 5, 5, 6, 6, 7, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9, 10, 10, 11, 11, 11, 11, 12, 12, 13, 13, 13, 13, 14, 14, 14, 14, 15, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 17, 17, 17, 18, 18, 18, 18, 19, 19, 19, 19, 19, 20, 20, 20, 20, 20, 20, 20, 20, 21, 21, 21, 22, 22, 22, 22
Offset: 0

Views

Author

Keywords

Comments

"Sequences containing no 3-term arithmetic progressions" is another phrase people may be searching for.
a(n) = size of largest subset of [1..n] such that no term is the average of any two others. These are also called non-averaging sets, or 3-free sequences. - N. J. A. Sloane, Mar 01 2012
More terms of this sequence can be found directly from A065825, because A003002(n) (this sequence) = the integer k such that A065825(k) <= n < A065825(k+1). - Shreevatsa R, Oct 18 2009

Examples

			Examples from Dybizbanski (2012) (includes earlier examples found by other people):
n, a(n), example of an optimal subset:
0, 0, []
1, 1, [1]
2, 2, [1, 2]
4, 3, [1, 2, 4]
5, 4, [1, 2, 4, 5]
9, 5, [1, 2, 4, 8, 9]
11, 6, [1, 2, 4, 5, 10, 11]
13, 7, [1, 2, 4, 5, 10, 11, 13]
14, 8, [1, 2, 4, 5, 10, 11, 13, 14]
20, 9, [1, 2, 6, 7, 9, 14, 15, 18, 20]
24, 10, [1, 2, 5, 7, 11, 16, 18, 19, 23, 24]
26, 11, [1, 2, 5, 7, 11, 16, 18, 19, 23, 24, 26]
30, 12, [1, 3, 4, 8, 9, 11, 20, 22, 23, 27, 28, 30]
32, 13, [1, 2, 4, 8, 9, 11, 19, 22, 23, 26, 28, 31, 32]
36, 14, [1, 2, 4, 8, 9, 13, 21, 23, 26, 27, 30, 32, 35, 36]
40, 15, [1, 2, 4, 5, 10, 11, 13, 14, 28, 29, 31, 32, 37, 38, 40]
41, 16, [1, 2, 4, 5, 10, 11, 13, 14, 28, 29, 31, 32, 37, 38, 40, 41]
51, 17, [1, 2, 4, 5, 10, 13, 14, 17, 31, 35, 37, 38, 40, 46, 47, 50, 51]
54, 18, [1, 2, 5, 6, 12, 14, 15, 17, 21, 31, 38, 39, 42, 43, 49, 51, 52, 54]
58, 19, [1, 2, 5, 6, 12, 14, 15, 17, 21, 31, 38, 39, 42, 43, 49, 51, 52, 54, 58]
63, 20, [1, 2, 5, 7, 11, 16, 18, 19, 24, 26, 38, 39, 42, 44, 48, 53, 55, 56, 61, 63]
71, 21, [1, 2, 5, 7, 10, 17, 20, 22, 26, 31, 41, 46, 48, 49, 53, 54, 63, 64, 68, 69, 71]
74, 22, [1, 2, 7, 9, 10, 14, 20, 22, 23, 25, 29, 46, 50, 52, 53, 55, 61, 65, 66, 68, 73, 74]
82, 23, [1, 2, 4, 8, 9, 11, 19, 22, 23, 26, 28, 31, 49, 57, 59, 62, 63, 66, 68, 71, 78, 81, 82]
		

References

  • H. L. Abbott, On a conjecture of Erdos and Straus on non-averaging sets of integers, Proc. 5th British Combinatorial Conference, 1975, pp. 1-4.
  • Bloom, T. F. (2014). Quantitative results in arithmetic combinatorics (Doctoral dissertation, University of Bristol).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • E. G. Straus, Nonaveraging sets. In Combinatorics (Proc. Sympos. Pure Math., Vol. XIX, Univ. California, Los Angeles, Calif., 1968), pp. 215-222. Amer. Math. Soc., Providence, R.I., 1971. MR0316255 (47 #4803)
  • T. Tao and V. Vu, Additive Combinatorics, Problem 10.1.3.

Crossrefs

The classical lower bound is A104406; A229037 gives a "greedy" lower bound. - N. J. A. Sloane, Apr 29 2023
Cf. A358062 (diagonal domination number for the n X n queen graph).
A selection of sequences related to "no three-term arithmetic progression": A003002, A003003, A003278, A004793, A005047, A005487, A033157, A065825, A092482, A093678, A093679, A093680, A093681, A093682, A094870, A101884, A101886, A101888, A140577, A185256, A208746, A229037.

Programs

  • Mathematica
    (* Program not suitable to compute a large number of terms *)
    a[n_] := a[n] = For[r = Range[n]; k = n, k >= 1, k--, If[AnyTrue[Subsets[r, {k}], FreeQ[#, {_, a_, _, b_, _, c_, _} /; b - a == c - b] &], Return[k]]];
    Table[Print["a(", n, ") = ", a[n]]; a[n], {n, 1, 25}] (* Jean-François Alcover, Jan 21 2018 *)
  • PARI
    ap3(v)=for(i=1,#v-2, for(j=i+2,#v, my(t=v[i]+v[j]); if(t%2==0 && setsearch(v,t/2), return(1)))); 0
    a(N)=forstep(n=N,2,-1, forvec(v=vector(n,i,[1,N]),if(!ap3(v), return(n)),2)); N \\ Charles R Greathouse IV, Apr 22 2022

Formula

Sanders proves that a(n) << n*(log log n)^5/log n. - Charles R Greathouse IV, Jan 22 2016
Bloom & Sisask prove that a(n) << n/(log n)^c for some c > 1. - Charles R Greathouse IV, Oct 11 2022

Extensions

Extended from 53 terms to 80 terms, using a simple brute-force program with some pruning, by Shreevatsa R, Oct 18 2009
See Dybizbanski (2012) for first 120 terms. - N. J. A. Sloane, Dec 17 2013
Edited by N. J. A. Sloane, Apr 12 2016
a(0)=0 prepended by Alois P. Heinz, May 14 2020

A065825 Smallest k such that n numbers may be picked in {1,...,k} with no three terms in arithmetic progression.

Original entry on oeis.org

1, 2, 4, 5, 9, 11, 13, 14, 20, 24, 26, 30, 32, 36, 40, 41, 51, 54, 58, 63, 71, 74, 82, 84, 92, 95, 100, 104, 111, 114, 121, 122, 137, 145, 150, 157, 163, 165, 169, 174, 194, 204, 209
Offset: 1

Views

Author

Ed Pegg Jr, Nov 23 2001

Keywords

Comments

"Sequences containing no 3-term arithmetic progressions" is another phrase people may be searching for. See also A003002.
Don Reble notes large gaps between a(4k) and a(4k+1).
Ed Pegg Jr conjectures the 2^k term always equals (3^k+1)/2 and calls these "unprogressive" sets. Jaroslaw Wroblewski (jwr(AT)math.uni.wroc.pl), Nov 04 2003, remarks that this conjecture is known to be false.
Further comments from Jaroslaw Wroblewski (jwr(AT)math.uni.wroc.pl), Nov 05 2003: log a(n) / log n tends to 1 was established in 1946 by Behrend. This was extended by me in the Math. Comp. paper. Using appropriately chosen intervals from B(4,9,4) and B(6,9,11) I have determined that log (2a(n)-1) / log n < log 3 / log 2 holds for n=60974 and for n=2^19 since a(60974) <= 19197041, a(524288) <= 515749566. See my web page for further bounds.
Bloom & Sisask prove that a(n) >> n (log n)^(1+c) for an absolute (small) constant c > 0. This improves the o(1) in Behrend's result that log a(n)/log n = 1 + o(1) to log log n/log n. - Charles R Greathouse IV, Aug 04 2020

Examples

			a(9) = 20 = 1 2 6 7 9 14 15 18 20
a(10) = 24 = 1 2 5 7 11 16 18 19 23 24
a(11) = 26 = 1 2 5 7 11 16 18 19 23 24 26
a(12) = 30 = 1 3 4 8 9 11 20 22 23 27 28 30 (unique)
a(13) = 32 = 1 2 4 8 9 11 19 22 23 26 28 31 32
a(14) = 36 = 1 2 4 8 9 13 21 23 26 27 30 32 35 36
a(15) = 40 = 1 2 4 5 10 11 13 14 28 29 31 32 37 38 40
a(16) = 41 = 1 2 4 5 10 11 13 14 28 29 31 32 37 38 40 41
a(17) = 51 = 1 2 4 5 10 13 14 17 31 35 37 38 40 46 47 50 51
a(18) = 54 = 1 2 5 6 12 14 15 17 21 31 38 39 42 43 49 51 52 54
a(19) = 58 = 1 2 5 6 12 14 15 17 21 31 38 39 42 43 49 51 52 54 58
a(20) = 63 = 1 2 5 7 11 16 18 19 24 26 38 39 42 44 48 53 55 56 61 63
a(21) = 71 = 1 2 5 7 10 17 20 22 26 31 41 46 48 49 53 54 63 64 68 69 71
a(22) = 74 = 1 2 7 9 10 14 20 22 23 25 29 46 50 52 53 55 61 65 66 68 73 74
a(23) = 82 = 1 2 4 8 9 11 19 22 23 26 28 31 49 57 59 62 63 66 68 71 78 81 82
a(24) = 84 = 1 3 4 8 9 16 18 21 22 25 30 37 48 55 60 63 64 67 69 76 77 81 82 84
a(25) = 92 = 1 2 6 8 9 13 19 21 22 27 28 39 58 62 64 67 68 71 73 81 83 86 87 90 92
a(26) = 95 = 1 2 4 5 10 11 22 23 25 26 31 32 55 56 64 65 67 68 76 77 82 83 91 92 94 95
a(27) = 100 = 1 3 6 7 10 12 20 22 25 26 29 31 35 62 66 68 71 72 75 77 85 87 90 91 94 96 100
		

References

  • Donald E. Knuth, Satisfiability, Fascicle 6, volume 4 of The Art of Computer Programming. Addison-Wesley, 2015, pages 135 and 190, Problem 31.
  • C. R. J. Singleton, "No Progress": Solution to Problem 2472, Journal of Recreational Mathematics, 30(4) 305 1999-2000.

Crossrefs

Cf. A003002 (three-free sequences), A003003, A003004, A003005, A003278, A005047, A225745.

Programs

  • Mathematica
    ThreeAPFree[n_, k_, a_] := Module[{d, j},
       For[d = 1, d < k/2, d ++,
        For[j = 1, j <= n - 2, j++,
         If[MemberQ[a, a[[j]] + d] && MemberQ[a, a[[j]] + 2 d],
          Return[False]]]];
       Return[True]];
    A065825[n_] := Module[{k, x, a},
      k = n;
      While[True,
       x = Subsets[Range[k], {n}];
       For[i = 1, i <= Length[x], i++,
        a = x[[i]];
        If[a[[1]] != 1 || a[[n]] != k, Continue[]];
        If[ThreeAPFree[n, k, a], Return[k]]];
       k++]]
    Table[A065825[n], {n, 1, 10}]  (* Robert Price, Mar 11 2019 *)
  • PARI
    \\ brute force
    has3AP(v)=for(i=1,#v-2,for(j=i+2,#v,my(t=(v[i]+v[j])/2);if(denominator(t)==1 && setsearch(v,t),return([v[i],t,v[j]]))));0
    a(n)=for(k=n,oo,forvec(u=vector(n,i,if(i==1,[1,1],i==k,[k,k],[2,k-1])),if(has3AP(u)==0, /* print(u); */ return(u[n])),2)) \\ Charles R Greathouse IV, Aug 04 2020

Formula

a(n) = A005047(n) + 1. - Rob Pratt, Jul 09 2015

Extensions

a(19) found by Guenter Stertenbrink in response to an A003278-based puzzle on www.mathpuzzle.com
More terms from Don Reble, Nov 25 2001
a(28)-a(32) from William Rex Marshall, Mar 24 2002
a(33) from William Rex Marshall, Nov 15 2003
a(34) from William Rex Marshall, Jan 24 2004
a(35)-a(36) (found by Gavin Theobold in 2004) communicated by William Rex Marshall, Mar 10 2007
a(37)-a(41) (from Wroblewski's web page) added by Joerg Arndt, Apr 25 2012
a(42)-a(43) from Fausto A. C. Cariboni, Sep 02 2018

A003003 Size of the largest subset of the numbers [1...n] which doesn't contain a 4-term arithmetic progression.

Original entry on oeis.org

1, 2, 3, 3, 4, 5, 5, 6, 7, 8, 8, 8, 9, 9, 10, 10, 11, 11, 12, 12, 13, 13, 14, 14, 15, 15, 16, 17, 17, 18, 18, 18, 19, 20, 20, 20, 21, 21, 21, 22, 22, 22, 23, 23, 24, 24, 24, 25, 25, 26, 26, 26, 27, 28, 28, 28, 28, 29, 29, 30, 30, 30, 30, 31, 31, 32, 32, 33, 33, 34, 34, 34
Offset: 1

Views

Author

Keywords

Comments

These subsets have been called 4-free sequences.
Szemeredi's theorem for arithmetic progressions of length 4 asserts that a(n) is o(n) as n -> infinity. - Doron Zeilberger, Mar 26 2008
False g.f. (z^12 + 1 - z^11 - z^10 + z^8 - z^6 + z^5 - z^3 + z)/((z+1)*(z-1)^2) was conjectured by Simon Plouffe in his 1992 dissertation, but in fact is wrong (cf. A136746).

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

A selection of sequences related to "no three-term arithmetic progression": A003002, A003003, A003278, A004793, A005047, A005487, A033157, A065825, A092482, A093678, A093679, A093680, A093681, A093682, A094870, A101884, A101886, A101888, A140577, A185256, A208746, A229037.

Extensions

a(52)-a(72) from Rob Pratt, Jul 09 2015

A003005 Size of the largest subset of the numbers [1..n] which doesn't contain a 6-term arithmetic progression.

Original entry on oeis.org

1, 2, 3, 4, 5, 5, 6, 7, 8, 9, 9, 10, 11, 12, 13, 13, 14, 15, 16, 17, 17, 18, 19, 20, 21, 22, 22, 22, 23, 23, 23, 24, 25, 25, 26, 27, 28, 28, 29, 30, 31, 31, 31, 32, 33, 34, 34, 35, 36, 37, 38, 38, 38, 39, 39, 40, 40, 41, 42, 42, 43, 44, 44, 45, 46, 47, 47, 48, 48
Offset: 1

Views

Author

Keywords

Comments

These subsets have been called 6-free sequences.

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

A005049 Minimal span of set of n elements with no 5-term arithmetic progression.

Original entry on oeis.org

5, 6, 7, 8, 10, 11, 12, 13, 15, 16, 17, 18, 23, 24, 26, 27, 28, 30, 32, 33, 35, 36, 37, 38, 40, 41, 42, 43, 48, 50, 51, 53, 55, 56, 57, 58, 60, 61, 62, 63, 65, 66, 67, 68, 75, 76, 77, 78, 80, 81, 82, 83, 85, 86, 87, 88, 90, 91, 92, 93, 104, 108, 112
Offset: 5

Views

Author

Keywords

Comments

If the first appearance of n in A003004 is A003004(k) = n, then a(n) = k-1. - Fausto A. C. Cariboni, Jun 17 2018

Crossrefs

Extensions

More terms from David W. Wilson, May 15 1997
a(24)-a(34) from Sean A. Irvine, Mar 16 2016
a(33) corrected by Fausto A. C. Cariboni, Jun 17 2018
a(35)-a(67) from Fausto A. C. Cariboni, Jun 17 2018

A225859 Smallest k such that n numbers can be picked in {1,...,k} with no five terms in arithmetic progression.

Original entry on oeis.org

1, 2, 3, 4, 6, 7, 8, 9, 11, 12, 13, 14, 16, 17, 18, 19, 24, 25, 27, 28, 29, 31, 33, 34, 36, 37, 38, 39, 41, 42, 43, 44, 49, 51, 52, 54, 56, 57, 58, 59, 61, 62, 63, 64, 66, 67, 68, 69, 76
Offset: 1

Views

Author

Don Knuth, Aug 05 2013

Keywords

References

  • Knuth, Donald E., Satisfiability, Fascicle 6, volume 4 of The Art of Computer Programming. Addison-Wesley, 2015, pages 135 and 190, Problem 31.

Crossrefs

This sequence is to A003004 as A065825 is to A003002.
Cf. A226066.
Showing 1-6 of 6 results.