A003052 Self numbers or Colombian numbers (numbers that are not of the form m + sum of digits of m for any m).
1, 3, 5, 7, 9, 20, 31, 42, 53, 64, 75, 86, 97, 108, 110, 121, 132, 143, 154, 165, 176, 187, 198, 209, 211, 222, 233, 244, 255, 266, 277, 288, 299, 310, 312, 323, 334, 345, 356, 367, 378, 389, 400, 411, 413, 424, 435, 446, 457, 468, 479, 490, 501, 512, 514, 525
Offset: 1
References
- Steven R. Finch, Mathematical Constants, Cambridge, 2003, Section 2.24.
- Martin Gardner, Time Travel and Other Mathematical Bewilderments. Freeman, NY, 1988, p. 116.
- V. S. Joshi, A note on self-numbers. Volume dedicated to the memory of V. Ramaswami Aiyar. Math. Student, Vol. 39 (1971), pp. 327-328. MR0330032 (48 #8371).
- D. R. Kaprekar, Puzzles of the Self-Numbers. 311 Devlali Camp, Devlali, India, 1959.
- D. R. Kaprekar, The Mathematics of the New Self Numbers, Privately Printed, 311 Devlali Camp, Devlali, India, 1963.
- D. R. Kaprekar, The Mathematics of the New Self Numbers (Part V). 311 Devlali Camp, Devlali, India, 1967.
- Bernardo Recamán, The Bogota Puzzles, Dover Publications, Inc., 2020, chapter 36, p. 33.
- József Sándor and Borislav Crstici, Handbook of Number theory II, Kluwer Academic Publishers, 2004, Chapter 4, pp. 384-386.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Author?, J. Recreational Math., vol. 23, no. 1, p. 244, 1991.
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..10000
- Max A. Alekseyev and N. J. A. Sloane, On Kaprekar's Junction Numbers, arXiv:2112.14365, 2021; Journal of Combinatorics and Number Theory 12:3 (2022), 115-155.
- Christian N. K. Anderson, Ulam Spiral of the first 5000 self numbers.
- Santanu Bandyopadhyay, Self-Number, Indian Institute of Technology Bombay (Mumbai, India, 2020).
- Santanu Bandyopadhyay, Self-Number, Indian Institute of Technology Bombay (Mumbai, India, 2020). [Local copy]
- Martin Gardner and N. J. A. Sloane, Correspondence, 1973-74
- Rosalind Guaraldo, On the Density of the Image Sets of Certain Arithmetic Functions - II, The Fibonacci Quarterly, Vol. 16, No. 5 (1978), pp. 481-488.
- Shyam Sunder Gupta, On Some Marvellous Numbers of Kaprekar, Exploring the Beauty of Fascinating Numbers, Springer (2025) Ch. 9, 275-315.
- D. R. Kaprekar, The Mathematics of the New Self Numbers, 1963. [annotated and scanned]
- Andrzej Makowski, On Kaprekar's "junction numbers", Math. Student, Vol. 34, No. 2 (1966), p. 77. MR0223292 (36 #6340); entire issue.
- A. Narasinga Rao, On a technique for obtaining numbers with a multiplicity of generators, Math. Student, Vol. 34, No. 2 (1966), pp. 79-84. MR0229573 (37 #5147); entire issue.
- Bernardo Recamán, Problem E2408, Amer. Math. Monthly, Vol. 80, No. 4 (1973), p. 434; Colombian Numbers, solution to Problem E2408 by D. W. Bange, ibid., Vol. 81, No. 4 (1974), p. 407.
- Giovanni Resta, Self or Colombian numbers, Numbersaplenty, 2013.
- Richard Schorn, Kaprekar's Sequence and his "Selfnumbers", DERIVE Newsletter, #53 (2004), pp. 30-32.
- Walter Schneider, Self Numbers, 2000-2003.
- Walter Schneider, Self Numbers, 2000-2003 (unpublished; local copy)
- N. J. A. Sloane, Martin Gardner and D. R. Kaprekar, Correspondence, 1974 [Scanned letters]
- Terry Trotter, Charlene Numbers
- Eric Weisstein's World of Mathematics, Self Number.
- Wikipedia, Self number.
- U. Zannier, On the distribution of self-numbers, Proc. Amer. Math. Soc., Vol. 85, No. 1 (1982), pp. 10-14.
- Index entries for Colombian or self numbers and related sequences
Crossrefs
Programs
-
Haskell
a003052 n = a003052_list !! (n-1) a003052_list = filter ((== 0) . a230093) [1..] -- Reinhard Zumkeller, Oct 11 2013, Aug 21 2011
-
Maple
isA003052 := proc(n) local k ; for k from 0 to n do if k+A007953(k) = n then RETURN(false): fi; od: RETURN(true) ; end: A003052 := proc(n) option remember; if n = 1 then 1; else for a from procname(n-1)+1 do if isA003052(a) then RETURN(a) ; fi; od; fi; end: # R. J. Mathar, Jul 27 2009
-
Mathematica
nn = 525; Complement[Range[nn], Union[Table[n + Total[IntegerDigits[n]], {n, nn}]]] (* T. D. Noe, Mar 31 2013 *)
-
PARI
is_A003052(n)={for(i=1,min(n\2,9*#digits(n)), sumdigits(n-i)==i && return); n} \\ M. F. Hasler, Mar 20 2011, updated Nov 08 2018
-
PARI
is(n) = {if(n < 30, return((n < 10 && n%2 == 1) || n == 20)); qd = 1 + logint(n, 10); r = 1 + (n-1)%9; h = (r + 9 * (r%2))/2; ld = 10; while(h + 9*qd >= n % ld, ld*=10); vs = vecsum(digits(n \ ld)); n %= ld; for(i = 0, qd, if(vs + vecsum(digits(n - h - 9*i)) == h + 9*i, return(0))); 1} \\ David A. Corneth, Aug 20 2020
Formula
A230093(a(n)) = 0. - Reinhard Zumkeller, Oct 11 2013
In fact this defines the sequence: x is in the sequence iff A230093(x) = 0. - M. F. Hasler, Nov 08 2018
Extensions
More terms from James Sellers, Jul 06 2000
Comments