cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A003052 Self numbers or Colombian numbers (numbers that are not of the form m + sum of digits of m for any m).

Original entry on oeis.org

1, 3, 5, 7, 9, 20, 31, 42, 53, 64, 75, 86, 97, 108, 110, 121, 132, 143, 154, 165, 176, 187, 198, 209, 211, 222, 233, 244, 255, 266, 277, 288, 299, 310, 312, 323, 334, 345, 356, 367, 378, 389, 400, 411, 413, 424, 435, 446, 457, 468, 479, 490, 501, 512, 514, 525
Offset: 1

Views

Author

Keywords

Comments

From Amiram Eldar, Nov 28 2020: (Start)
The term "self numbers" was coined by Kaprekar (1959). The term "Colombian number" was coined by Recamán (1973) of Bogota, Colombia.
The asymptotic density of this sequence is approximately 0.0977778 (Guaraldo, 1978). (End)

References

  • Steven R. Finch, Mathematical Constants, Cambridge, 2003, Section 2.24.
  • Martin Gardner, Time Travel and Other Mathematical Bewilderments. Freeman, NY, 1988, p. 116.
  • V. S. Joshi, A note on self-numbers. Volume dedicated to the memory of V. Ramaswami Aiyar. Math. Student, Vol. 39 (1971), pp. 327-328. MR0330032 (48 #8371).
  • D. R. Kaprekar, Puzzles of the Self-Numbers. 311 Devlali Camp, Devlali, India, 1959.
  • D. R. Kaprekar, The Mathematics of the New Self Numbers, Privately Printed, 311 Devlali Camp, Devlali, India, 1963.
  • D. R. Kaprekar, The Mathematics of the New Self Numbers (Part V). 311 Devlali Camp, Devlali, India, 1967.
  • Bernardo Recamán, The Bogota Puzzles, Dover Publications, Inc., 2020, chapter 36, p. 33.
  • József Sándor and Borislav Crstici, Handbook of Number theory II, Kluwer Academic Publishers, 2004, Chapter 4, pp. 384-386.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • Author?, J. Recreational Math., vol. 23, no. 1, p. 244, 1991.

Crossrefs

For self primes, i.e., self numbers which are primes, see A006378.
Complement of A176995.
See A010061 for the binary version, A283002 for a base-100 version.
Cf. A247104 (subsequence of squarefree terms).
Cf. A377472 for first differences, A377474 for indices where new differences appear.

Programs

  • Haskell
    a003052 n = a003052_list !! (n-1)
    a003052_list = filter ((== 0) . a230093) [1..]
    -- Reinhard Zumkeller, Oct 11 2013, Aug 21 2011
  • Maple
    isA003052 := proc(n) local k ; for k from 0 to n do if k+A007953(k) = n then RETURN(false): fi; od: RETURN(true) ; end:
    A003052 := proc(n) option remember; if n = 1 then 1; else for a from procname(n-1)+1 do if isA003052(a) then RETURN(a) ; fi; od; fi; end: # R. J. Mathar, Jul 27 2009
  • Mathematica
    nn = 525; Complement[Range[nn], Union[Table[n + Total[IntegerDigits[n]], {n, nn}]]] (* T. D. Noe, Mar 31 2013 *)
  • PARI
    is_A003052(n)={for(i=1,min(n\2,9*#digits(n)), sumdigits(n-i)==i && return); n}  \\ M. F. Hasler, Mar 20 2011, updated Nov 08 2018
    
  • PARI
    is(n) = {if(n < 30, return((n < 10 && n%2 == 1) || n == 20)); qd = 1 + logint(n, 10); r = 1 + (n-1)%9; h = (r + 9 * (r%2))/2; ld = 10; while(h + 9*qd >= n % ld, ld*=10); vs = vecsum(digits(n \ ld)); n %= ld; for(i = 0, qd, if(vs + vecsum(digits(n - h - 9*i)) == h + 9*i, return(0))); 1} \\ David A. Corneth, Aug 20 2020
    

Formula

A230093(a(n)) = 0. - Reinhard Zumkeller, Oct 11 2013
In fact this defines the sequence: x is in the sequence iff A230093(x) = 0. - M. F. Hasler, Nov 08 2018

Extensions

More terms from James Sellers, Jul 06 2000