A003116 Expansion of the reciprocal of the g.f. defining A039924.
1, 1, 2, 4, 7, 13, 23, 41, 72, 127, 222, 388, 677, 1179, 2052, 3569, 6203, 10778, 18722, 32513, 56455, 98017, 170161, 295389, 512755, 890043, 1544907, 2681554, 4654417, 8078679, 14022089, 24337897, 42242732, 73319574, 127258596, 220878683
Offset: 0
Examples
From _Joerg Arndt_, Dec 29 2012: (Start) There are a(6)=23 compositions p(1)+p(2)+...+p(m)=6 such that p(k)-p(k-1) <= 1: [ 1] [ 1 1 1 1 1 1 ] [ 2] [ 1 1 1 1 2 ] [ 3] [ 1 1 1 2 1 ] [ 4] [ 1 1 2 1 1 ] [ 5] [ 1 1 2 2 ] [ 6] [ 1 2 1 1 1 ] [ 7] [ 1 2 1 2 ] [ 8] [ 1 2 2 1 ] [ 9] [ 1 2 3 ] [10] [ 2 1 1 1 1 ] [11] [ 2 1 1 2 ] [12] [ 2 1 2 1 ] [13] [ 2 2 1 1 ] [14] [ 2 2 2 ] [15] [ 2 3 1 ] [16] [ 3 1 1 1 ] [17] [ 3 1 2 ] [18] [ 3 2 1 ] [19] [ 3 3 ] [20] [ 4 1 1 ] [21] [ 4 2 ] [22] [ 5 1 ] [23] [ 6 ] Replacing the condition with p(k)-p(k-1) <= 0 gives integer partitions. (End)
References
- D. H. Lehmer, Combinatorial and cyclotomic properties of certain tridiagonal matrices. Proceedings of the Fifth Southeastern Conference on Combinatorics, Graph Theory, and Computing (Florida Atlantic Univ., Boca Raton, Fla., 1974), pp. 53-74. Congressus Numerantium, No. X, Utilitas Math., Winnipeg, Man., 1974. MR0441852.
- H. P. Robinson, Letter to N. J. A. Sloane, Nov 19 1973.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..4176 (first 401 terms from T. D. Noe)
- Roland Bacher, Generic numerical semigroups, hal-03221466 [math.CO], 2021.
- George Beck and Shane Chern, Reciprocity between partitions and compositions, arXiv:2108.04363 [math.CO], 2021.
- Shalosh B. Ekhad and Doron Zeilberger, D.H. Lehmer's Tridiagonal determinant: An Etude in (Andrews-Inspired) Experimental Mathematics, arXiv:1808.06730 [math.CO], 2018.
- Miguel Mendez, Shift-plethysm, Hydra continued fractions, and m-distinct partitions, arXiv:2009.04623 [math.CO], 2020.
- Herman P. Robinson, Letter to N. J. A. Sloane, Nov 13 1973.
- Herman P. Robinson, Letter to N. J. A. Sloane, Nov 19 1973.
Programs
-
Haskell
a003116 n = a168396 (2 * n + 1) n -- Reinhard Zumkeller, Sep 13 2013
-
Mathematica
max = 35; f[x_] := 1/Sum[x^k^2*((-1)^k/Product[1 - x^i, {i, 1, k}]), {k, 0, Floor[Sqrt[max]]}]; CoefficientList[ Series[f[x], {x, 0, max}], x](* Jean-François Alcover, Jun 12 2012, after PARI *) b[n_, k_] := b[n, k] = Expand[If[n == 0, 1, x* Sum[b[n - j, j], {j, 1, Min[n, k + 1]}]]]; a[n_] := Total@CoefficientList[b[n, n], x]; Table[a[n], {n, 0, 35}] (* Jean-François Alcover, Apr 14 2022, after Alois P. Heinz in A168443 *)
-
PARI
a(n)=if(n<0,0,polcoeff(1/sum(k=0,sqrtint(n),x^k^2/prod(i=1,k,x^i-1,1+x*O(x^n))),n))
Formula
G.f.: 1/(Sum_{k>=0} x^(k^2)(-1)^k/(Product_{i=1..k} 1-x^i)).
a(n) ~ c * d^n, where d = 1/A347901 = 1.73566282453034742565826074971966853... and c = 0.9180565304926754125870866477349969555868577236908640010903420353... - Vaclav Kotesovec, Nov 01 2021
Extensions
Definition revised by N. J. A. Sloane, Aug 10 2018 at the suggestion of Doron Zeilberger
Comments