cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A003143 a(2*n) = floor( 17*2^n/14 ), a(2*n+1) = floor( 12*2^n/7 ).

Original entry on oeis.org

1, 1, 2, 3, 4, 6, 9, 13, 19, 27, 38, 54, 77, 109, 155, 219, 310, 438, 621, 877, 1243, 1755, 2486, 3510, 4973, 7021, 9947, 14043, 19894, 28086, 39789, 56173, 79579, 112347, 159158, 224694, 318317, 449389, 636635, 898779, 1273270, 1797558
Offset: 0

Views

Author

Keywords

References

  • D. E. Knuth, The Art of Computer Programming. Addison-Wesley, Reading, MA, Vol. 3, p. 207.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Magma
    [(17+7*(n mod 2))*2^(n div 2) div 14: n in [0..50]]; // Vincenzo Librandi, May 27 2016
    
  • Maple
    A003143:=(1+z**3-z**4+z**5-z**6+z**7)/((z-1)*(z**2-z+1)*(z**2+z+1)*(2*z**2-1)); # [Conjectured (correctly) by Simon Plouffe in his 1992 dissertation.]
  • Mathematica
    Flatten[Table[{Floor[17 2^n / 14], Floor[12 2^n / 7]}, {n, 0, 30}]] (* Vincenzo Librandi, May 27 2016 *)
  • PARI
    a(n)=(17+7*(n%2))*2^(n\2)\14
    
  • SageMath
    [(((17 +7*(n%2))*2^(n//2))//14) for n in range(51)] # G. C. Greubel, Nov 04 2022

Formula

G.f.: (1 +x^3 -x^4 +x^5 -x^6 +x^7)/((1-x)(1-x+x^2)*(1+x+x^2)*(1-2*x^2)). - Simon Plouffe
a(n) = a(n-1) + a(n-2) - a(n-3) + a(n-4) - a(n-5) + 2*a(n-6) - 2*a(n-7) for n > 7. - Chai Wah Wu, May 25 2016
a(n) = (1/2)*[n=0] - 2/3 - (1/14)*(2*A010892(n) - 3*A010892(n-1)) + (1/42)*(4*A049347(n) - A049347(n-1)) + (1/14)*(17*A077957(n) + 24*A077957(n-1)). - G. C. Greubel, Nov 04 2022

Extensions

More terms from Michael Somos, May 04 2000