A003180 Number of equivalence classes of Boolean functions of n variables under action of symmetric group.
2, 4, 12, 80, 3984, 37333248, 25626412338274304, 67516342973185974328175690087661568, 2871827610052485009904013737758920847669809829897636746529411152822140928
Offset: 0
Examples
From _Gus Wiseman_, Aug 05 2019: (Start) Non-isomorphic representatives of the a(0) = 2 through a(2) = 12 sets of subsets: {} {} {} {{}} {{}} {{}} {{1}} {{1}} {{},{1}} {{1,2}} {{},{1}} {{1},{2}} {{},{1,2}} {{2},{1,2}} {{},{1},{2}} {{},{2},{1,2}} {{1},{2},{1,2}} {{},{1},{2},{1,2}} (End)
References
- M. A. Harrison, Introduction to Switching and Automata Theory. McGraw Hill, NY, 1965, p. 147.
- D. E. Knuth, The Art of Computer Programming, Vol. 4A, Section 7.1.1, p. 79.
- S. Muroga, Threshold Logic and Its Applications. Wiley, NY, 1971, p. 38, Table 2.3.2. - Row 5.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Vladeta Jovovic, Table of n, a(n) for n = 0..11
- Steven R. Finch, Mathematical Constants II, Encyclopedia of Mathematics and Its Applications, Cambridge University Press, Cambridge, 2018.
- Toru Ishihara, Enumeration of hypergraphs, European Journal of Combinatorics, Volume 22, Issue 4, May 2001.
- S. Muroga, Threshold Logic and Its Applications, Wiley, NY, 1971. [Annotated scans of a few pages]
- Jianguo Qian, Enumeration of unlabeled uniform hypergraphs, Discrete Math. 326 (2014), 66--74. MR3188989. See Table 1, p. 71. - _N. J. A. Sloane_, May 12 2014
- Marko Riedel, Cycle indices for the enumeration of non-isomorphic hypergraphs, Mathematics Stack Exchange, 2018.
- Marko Riedel, Implementation of the Ishihara algorithm for cycle indices of the action of the symmetric group S_n on sets of subsets of an n-set.
- Index entries for sequences related to Boolean functions
Programs
-
Maple
with(numtheory):with(combinat): for n from 1 to 10 do p:=partition(n): s:=0: for k from 1 to nops(p) do q:=convert(p[k],multiset): for i from 0 to n do a(i):=0: od: for i from 1 to nops(q) do a(q[i][1]):=q[i][2]: od: c:=1: ord:=1: for i from 1 to n do c:=c*a(i)!*i^a(i):ord:=lcm(ord,i): od: ss:=0: for i from 1 to ord do if ord mod i=0 then ss:=ss+phi(ord/i)*2^add(gcd(j,i)*a(j),j=1..n): fi: od: s:=s+2^(ss/ord)/c: od: printf(`%d `,n): printf("%d ",s): od: # Vladeta Jovovic, Sep 19 2006
-
Mathematica
a[n_] := Sum[1/Function[p, Product[Function[c, j^c*c!][Coefficient[p, x, j]], {j, 1, Exponent[p, x]}]][Total[x^l]]*2^(Function[w, Sum[Product[ 2^GCD[t, l[[i]]], {i, 1, Length[l]}], {t, 1, w}]/w][If[l == {}, 1, LCM @@ l]]), {l, IntegerPartitions[n]}]; a /@ Range[0, 11] (* Jean-François Alcover, Feb 19 2020, after Alois P. Heinz in A000612 *) fix[s_] := 2^Sum[Sum[MoebiusMu[i/d] 2^Sum[GCD[j, d] s[j], {j, Keys[s]}], {d, Divisors[i]}]/i, {i, LCM @@ Keys[s]}]; a[0] = 2; a[n_] := Sum[fix[s]/Product[j^s[j] s[j]!, {j, Keys[s]}], {s, Counts /@ IntegerPartitions[n]}]; Table[a[n], {n, 0, 8}] (* Andrey Zabolotskiy, Mar 24 2020, after Christian G. Bower's formula; requires Mathematica 10+ *)
Formula
a(n) = Sum_{1*s_1+2*s_2+...=n} (fixA[s_1, s_2, ...]/(1^s_1*s_1!*2^s_2*s_2!*...)) where fixA[s_1, s_2, ...] = 2^Sum_{i>=1} ( Sum_{d|i} ( mu(i/d)*( 2^Sum_{j>=1} ( gcd(j, d)*s_j))))/i.
a(n) = 2 * A000612(n).
Extensions
More terms from Vladeta Jovovic, Sep 19 2006
Edited with formula by Christian G. Bower, Jan 08 2004
Comments