cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A003230 Expansion of 1/((1-x)*(1-2*x)*(1-x-2*x^3)).

Original entry on oeis.org

1, 4, 11, 28, 67, 152, 335, 724, 1539, 3232, 6727, 13900, 28555, 58392, 118959, 241604, 489459, 989520, 1997015, 4024508, 8100699, 16289032, 32726655, 65705268, 131837763, 264399936, 530028199, 1062139180, 2127809963
Offset: 0

Views

Author

Keywords

Comments

The number of simple squares in the (n+4)-th iteration of the Harter-Heighway dragon (see Wikipedia reference below). - Roland Kneer, Jul 01 2013
The number of double points of the (n+4)-th iteration of the Harter-Heighway dragon. - Manfred Lindemann, Nov 11 2015

References

  • D. E. Daykin and S. J. Tucker, Introduction to Dragon Curves. Unpublished, 1976. See links in A003229 for an earlier version.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Maple
    A003230:=-1/(z-1)/(2*z-1)/(-1+z+2*z**3); # Simon Plouffe in his 1992 dissertation
    S:=series(1/((1-x)*(1-2*x)*(1-x-2*x^3)),x,101): a:=n->coeff(S,x,n):
    seq(a(n),n=0..100); # Manfred Lindemann, Nov 13 2015
  • Mathematica
    CoefficientList[Series[1/((1-x)*(1-2x)*(1-x-2x^3)),{x,0,40}],x] (* Vincenzo Librandi, Jun 11 2012 *)
  • PARI
    Vec(1/((1-x)*(1-2*x)*(1-x-2*x^3))+O(x^66)) \\ Joerg Arndt, Jun 29 2013

Formula

a(n+3) = a(n+2) + 2*a(n) + 2^(n+4) - 1, with a(-3)=a(-2)=a(-1)=0. - Manfred Lindemann, Nov 11 2015
a(n+2) - a(n+1) = A003477(n+2) + A003477(n). - Manfred Lindemann, Dec 08 2015
a(n) = q(n) + q(n-1) + 2*Sum_{i=0..n-2}(q(i)), where q(i)=A003477 and q(-1)=0. - Manfred Lindemann, Dec 08 2015
From Manfred Lindemann, Nov 11 2015: (Start)
With thrt:=(54+6*sqrt(87))^(1/3), ROR:=(thrt/6-1/thrt) and RORext:=(thrt/6+1/thrt) becomes ROC:=(1/2)*(i*sqrt(3)*RORext-ROR), where i^2=-1.
Now ROR, ROC and conjugate(ROC) are the zeros of 1-x-2*x^3.
With AR:=(2*ROR^2+ROR+2)/(2*ROR-3), AC:=(2*ROC^2+ROC+2)/(2*ROC-3) and the zeros of (1-2*x) and (1-x)
a(n) = (1/2)*(AR*ROR^-(n+4)+AC*ROC^-(n+4)+conjugate(AC*ROC^-(n+4))+1*(1/2)^-(n+4)+1*1^-(n+4)).
Simplified: a(n) = (1/2)*(AR*ROR^-(n+4)+2*Re(AC*ROC^-(n+4))+2^(n+4)+1).
(End)

Extensions

More terms from James Sellers, Aug 21 2000
Maple program corrected by Robert Israel, Nov 11 2015