cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A003229 a(n) = a(n-1) + 2*a(n-3) with a(0)=a(1)=1, a(2)=3.

Original entry on oeis.org

1, 1, 3, 5, 7, 13, 23, 37, 63, 109, 183, 309, 527, 893, 1511, 2565, 4351, 7373, 12503, 21205, 35951, 60957, 103367, 175269, 297183, 503917, 854455, 1448821, 2456655, 4165565, 7063207, 11976517, 20307647, 34434061, 58387095, 99002389
Offset: 0

Views

Author

Keywords

Comments

Equals eigensequence of an infinite lower triangular matrix with 1's in the main diagonal, 0's in the subdiagonal and 2's in the subsubdiagonal (the triangle in the lower section of A155761). - Gary W. Adamson, Jan 28 2009
The operation in the comment of Jan 28 2009 is equivalent to the INVERT transform of (1, 0, 2, 0, 0, 0, ...). - Gary W. Adamson, Jan 21 2017
For n>=1, a(n) equals the number of ternary words of length n-1 having at least 2 zeros between every two successive nonzero letters. - Milan Janjic, Mar 09 2015

References

  • D. E. Daykin and S. J. Tucker, Introduction to Dragon Curves. Unpublished, 1976. See links below for an earlier version.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A077949, A077974. First differences of A003479. Partial sums of A052537. Equals |A077906(n)|+|A077906(n+1)|.

Programs

  • Haskell
    a003229 n = a003229_list !! n
    a003229_list = 1 : 1 : 3 : zipWith (+)
                               (map (* 2) a003229_list) (drop 2 a003229_list)
    -- Reinhard Zumkeller, Jan 01 2014
  • Magma
    I:=[1, 1, 3]; [n le 3 select I[n] else Self(n-1)+2*Self(n-3): n in [1..40]]; // Vincenzo Librandi, Jun 12 2012
    
  • Maple
    seq(add(binomial(n-2*k,k)*2^k,k=0..floor(n/3)),n=1..38); # Zerinvary Lajos, Apr 03 2007
    with(combstruct): SeqSeqSeqL := [T, {T=Sequence(S), S=Sequence(U, card >= 1), U=Sequence(Z, card >=3)}, unlabeled]: seq(count(SeqSeqSeqL, size=n+4), n=0..35); # Zerinvary Lajos, Apr 04 2009
    a := n -> `if`(n<3,[1,1,3][n+1], hypergeom([-n/3, -(1+n)/3, (1-n)/3], [-n/2, -(1+n)/2], -27/2)); seq(simplify(a(n)),n=0..35); # Peter Luschny, Mar 09 2015
  • Mathematica
    LinearRecurrence[{1,0, 2},{1,1,3},40] (* Vincenzo Librandi, Jun 12 2012 *)

Formula

G.f.: (1+2*z^2)/(1-z-2*z^3). - Simon Plouffe in his 1992 dissertation
a(n) = A077949(n+1) = |A077974(n+1)|.
a(n) = u(n+1) - 3*u(n) + 2*u(n-1) where u(i) = A003230(i) [Daykin and Tucker]. - N. J. A. Sloane, Jul 08 2014
a(n) = hypergeom([-n/3,-(1+n)/3,(1-n)/3],[-n/2,-(1+n)/2],-27/2) for n>=3. - Peter Luschny, Mar 09 2015

A003477 Expansion of 1/((1-2x)(1+x^2)(1-x-2x^3)).

Original entry on oeis.org

1, 3, 6, 14, 33, 71, 150, 318, 665, 1375, 2830, 5798, 11825, 24039, 48742, 98606, 199113, 401455, 808382, 1626038, 3267809, 6562295, 13169814, 26416318, 52962681, 106145855, 212665582, 425965126, 853005201, 1707833095, 3418756806
Offset: 0

Views

Author

Keywords

Comments

The number of simple squares in the biggest 'cloud' of the Harter-Heighway dragon of degree (n+4). Equals the number of double points in the biggest 'cloud' of the very same. - Manfred Lindemann, Dec 06 2015

References

  • D. E. Daykin and S. J. Tucker, Introduction to Dragon Curves. Unpublished, 1976. See links in A003229 for an earlier version.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A003230, A077949. - Manfred Lindemann, Dec 06 2015
Cf. A077854.

Programs

  • Maple
    A003477:=1/(2*z-1)/(-1+z+2*z**3)/(1+z**2); # Simon Plouffe in his 1992 dissertation
    S:=series(1/((1-x-2*x^3)*(1-2*x)*(1+x^2)), x, 101): a:=n->coeff(S, x, n):
    seq(a(n), n=0..100); # Manfred Lindemann, Dec 06 2015
    a:= gfun:-rectoproc({a(n) = 3*a(n-1)-3*a(n-2)+5*a(n-3)-6*a(n-4)+2*a(n-5)-4*a(n-6),seq(a(i)=[1,3,6,14,33,71][i+1],i=0..5)},a(n),remember):
    seq(a(n),n=0..100); # Robert Israel, Dec 14 2015
  • Mathematica
    CoefficientList[Series[1/((1-2x)(1+x^2)(1-x-2x^3)),{x,0,40}],x] (* Vincenzo Librandi, Jun 11 2012 *)
    LinearRecurrence[{3, -3, 5, -6, 2, -4}, {1, 3, 6, 14, 33, 71}, 31] (* Arie Bos, Dec 03 2019 *)
  • PARI
    Vec(1/((1-2*x)*(1+x^2)*(1-x-2*x^3))+O(x^99)) \\ Charles R Greathouse IV, Sep 26 2012

Formula

a(0) = 1; for n > 0, a(n) = 3*a(n-1) - 3*a(n-2) + 5*a(n-3) - 6*a(n-4) + 2*a(n-5) - 4*a(n-6) (where a(n)=0 for -5 <= n <= -1). - Jon E. Schoenfield, Apr 23 2010
From Manfred Lindemann, Dec 06 2015: (Start)
a(n) = 3*a(n-1) - 2*a(n-2) + 2*a(n-3) - 4*a(n-4) + Re(i^(n-4)), a(-5)=a(-4)=a(-3)=a(-2)=0 for all integers n element Z.
a(n+2)+a(n) = A003230(n+2)-A003230(n+1). [Daykin and Tucker equation (5)]
With thrt:=(54+6*sqrt(87))^(1/3), ROR:=(thrt/6-1/thrt) and RORext:=(thrt/6+1/thrt) becomes ROC:=(1/2)*(i*sqrt(3)*RORext-ROR), where i^2=-1.
Now ROR, ROC and conjugate(ROC) are the zeros of 1-x-2*x^3.
With BR:=1/(2*ROR-3), BC:=1/(2*ROC-3) and the zeros of (1-2*x) and (1+x^2) becomes
a(n) = (1/2)*(BR*ROR^-(n+4) + BC*ROC^-(n+4) + conjugate(BC*ROC^-(n+4)) + (2/5)*(1/2)^-(n+4) + (3/10 + i*(1/10))*i^-(n+4) + conjugate((3/10 + i*(1/10))*i^-(n+4))).
Simplified: a(n) = (BR/2)*ROR^-(n+4) + Re(BC*ROC^-(n+4)) + (1/5)*(1/2)^-(n+4) + Re((3/10 + i*(1/10))*i^-(n+4)).
(End)
Conjecture: a(n) = A077854(n) + 2*(a(n-3) + a(n-4) + ... + a(1)). - Arie Bos, Nov 29 2019

Extensions

More terms from Jon E. Schoenfield, Apr 23 2010

A227036 Expansion of 2*(1+x^2)/((1-x)*(1-x-2*x^3)).

Original entry on oeis.org

2, 4, 8, 16, 28, 48, 84, 144, 244, 416, 708, 1200, 2036, 3456, 5860, 9936, 16852, 28576, 48452, 82160, 139316, 236224, 400548, 679184, 1151636, 1952736, 3311108, 5614384, 9519860, 16142080, 27370852, 46410576, 78694740, 133436448, 226257604, 383647088, 650519988, 1103035200, 1870329380
Offset: 0

Views

Author

Roland Kneer, Jun 28 2013

Keywords

Comments

Conjecture: The perimeter of the n-th iteration of the Harter-Heighway dragon is a(n) segments or a(n)/2^(n/2) base units.
a(n) = 2^(n+1)-4*A003230(n-4) (two times the number of segments, minus four times the number of squares)
The first differences 2, 2, 4, 8, 12, 20,.. are twice the (empirical) A203175. - R. J. Mathar, Jul 02 2013

Examples

			For the 4th iteration, take two 3rd iteration dragons (2*16); put together, they will make one square, so subtract the inner perimeter 4.
		

Crossrefs

Cf. A014577.

Programs

  • Mathematica
    LinearRecurrence[{2, -1, 2, -2}, {2, 4, 8, 16}, 40] (* T. D. Noe, Jul 02 2013 *)
    CoefficientList[Series[2 (1 + x^2) / ((1 - x) (1 - x - 2 x^3)), {x, 0, 40}], x] (* Vincenzo Librandi, Jul 17 2013 *)
  • PARI
    Vec(2*(1+x^2)/((1-x)*(1-x-2*x^3))+O(x^66)) \\ Joerg Arndt, Jul 01 2013

A339739 a(n) gives the number of squares in the n-th iteration of the Harter-Heighway dragon.

Original entry on oeis.org

0, 0, 0, 1, 4, 11, 30, 78, 205, 546, 1455, 4062, 11192, 31889, 88487, 254594, 710683, 2047705, 5711439, 16455169, 45894868, 132118562, 368149344, 1059171430, 2950384277, 8484556353
Offset: 1

Views

Author

Peter Kagey, Jan 05 2021

Keywords

Comments

a(n) >= A003230(n-4) for n >= 4, and a(n) > A003230(n-4) for n >= 7.

Examples

			For n = 5, the fifth iteration of the Harter-Heighway dragon has a(5) = 4 squares, as illustrated below. All of the squares are 1 X 1.
    *---*
    |   |
*---*   *
|
*---*
    |
*---*---*   *---*   *---*
|   |   |   |   |   |   |
*---*   *---*---*---*   *---*
            |   |           |
        *---*---*       *---*
        |   |
        *---*
For n = 7, the seventh iteration of the Harter-Heighway dragon has a(7) = 30 squares, as illustrated below. It contains A003230(7) = 28 1 X 1 squares and two 2 X 2 squares.
       _   _
      |_|_| |_
   _   _|    _|
  |_|_|_
    |_|_|
      |_   _       _       _
   _   _|_|_|    _|_|    _|_|
  |_|_|_|_|_   _|_|_   _|_|_   _
    |_| |_| |_|_|_|_|_| |_| |_|_|
              |_|_|_|_        |_
           _   _|_| |_|        _|
          |_|_|_|_          |_|
            |_| |_|
		

Crossrefs

A003230 gives the number of 1 X 1 squares.

Extensions

a(17)-a(26) from Bert Dobbelaere, Jun 15 2024
Showing 1-4 of 4 results.