A003229 a(n) = a(n-1) + 2*a(n-3) with a(0)=a(1)=1, a(2)=3.
1, 1, 3, 5, 7, 13, 23, 37, 63, 109, 183, 309, 527, 893, 1511, 2565, 4351, 7373, 12503, 21205, 35951, 60957, 103367, 175269, 297183, 503917, 854455, 1448821, 2456655, 4165565, 7063207, 11976517, 20307647, 34434061, 58387095, 99002389
Offset: 0
References
- D. E. Daykin and S. J. Tucker, Introduction to Dragon Curves. Unpublished, 1976. See links below for an earlier version.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- D. Birmajer, J. B. Gil, and M. D. Weiner, On the Enumeration of Restricted Words over a Finite Alphabet, J. Int. Seq. 19 (2016) # 16.1.3, Example 9.
- D. E. Daykin, Letter to N. J. A. Sloane, Dec 1973.
- D. E. Daykin, Letter to N. J. A. Sloane, Mar 1974.
- D. E. Daykin and S. J. Tucker, Sequences from Folding Paper, Unpublished manuscript, 1975, cached copy, page 1.
- D. E. Daykin and S. J. Tucker, Sequences from Folding Paper, Unpublished manuscript, 1975, cached copy, page 2.
- D. E. Daykin and S. J. Tucker, Sequences from Folding Paper, Unpublished manuscript, 1975, cached copy, page 3.
- D. E. Daykin and S. J. Tucker, Sequences from Folding Paper, Unpublished manuscript, 1975, cached copy, page 4.
- D. E. Daykin and S. J. Tucker, Sequences from Folding Paper, Unpublished manuscript, 1975, cached copy, reverse side of page 4.
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 417.
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992.
- Index entries for linear recurrences with constant coefficients, signature (1,0,2).
Crossrefs
Programs
-
Haskell
a003229 n = a003229_list !! n a003229_list = 1 : 1 : 3 : zipWith (+) (map (* 2) a003229_list) (drop 2 a003229_list) -- Reinhard Zumkeller, Jan 01 2014
-
Magma
I:=[1, 1, 3]; [n le 3 select I[n] else Self(n-1)+2*Self(n-3): n in [1..40]]; // Vincenzo Librandi, Jun 12 2012
-
Maple
seq(add(binomial(n-2*k,k)*2^k,k=0..floor(n/3)),n=1..38); # Zerinvary Lajos, Apr 03 2007 with(combstruct): SeqSeqSeqL := [T, {T=Sequence(S), S=Sequence(U, card >= 1), U=Sequence(Z, card >=3)}, unlabeled]: seq(count(SeqSeqSeqL, size=n+4), n=0..35); # Zerinvary Lajos, Apr 04 2009 a := n -> `if`(n<3,[1,1,3][n+1], hypergeom([-n/3, -(1+n)/3, (1-n)/3], [-n/2, -(1+n)/2], -27/2)); seq(simplify(a(n)),n=0..35); # Peter Luschny, Mar 09 2015
-
Mathematica
LinearRecurrence[{1,0, 2},{1,1,3},40] (* Vincenzo Librandi, Jun 12 2012 *)
Formula
G.f.: (1+2*z^2)/(1-z-2*z^3). - Simon Plouffe in his 1992 dissertation
a(n) = u(n+1) - 3*u(n) + 2*u(n-1) where u(i) = A003230(i) [Daykin and Tucker]. - N. J. A. Sloane, Jul 08 2014
a(n) = hypergeom([-n/3,-(1+n)/3,(1-n)/3],[-n/2,-(1+n)/2],-27/2) for n>=3. - Peter Luschny, Mar 09 2015
Comments