cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 22 results. Next

A077949 Expansion of 1/(1-x-2*x^3).

Original entry on oeis.org

1, 1, 1, 3, 5, 7, 13, 23, 37, 63, 109, 183, 309, 527, 893, 1511, 2565, 4351, 7373, 12503, 21205, 35951, 60957, 103367, 175269, 297183, 503917, 854455, 1448821, 2456655, 4165565, 7063207, 11976517, 20307647, 34434061, 58387095, 99002389, 167870511, 284644701
Offset: 0

Views

Author

N. J. A. Sloane, Nov 17 2002

Keywords

Comments

Row sums of the Riordan array (1, x*(1+2*x^2)). - Paul Barry, Jan 12 2006
The compositions of n in which each natural number is colored by one of p different colors are called p-colored compositions of n. For n>=3, 3*a(n-3) equals the number of 3-colored compositions of n with all parts >=3, such that no adjacent parts have the same color. - Milan Janjic, Nov 27 2011
Number of compositions of n into parts 1 and two sorts of parts 2. - Joerg Arndt, Aug 29 2013
a(n+2) equals the number of words of length n on alphabet {0,1,2}, having at least two zeros between every two successive nonzero letters. - Milan Janjic, Feb 07 2015
Number of pairs of rabbits when there are 2 pairs per litter and offspring reach parenthood after 3 gestation periods; a(n) = a(n-1) + 2*a(n-3), with a(0) = a(1) = a(2) = 1. - Robert FERREOL, Oct 27 2018

Crossrefs

Unsigned version of A077974. Cf. A003229.

Programs

  • GAP
    a:=[1,1,1];; for n in [4..30] do a[n]:=a[n-1]+2*a[n-3]; od; a; # G. C. Greubel, Jun 22 2019
  • Magma
    [n le 3 select 1 else Self(n-1)+2*Self(n-3): n in [1..50]]; // Vincenzo Librandi, Mar 13 2014
    
  • Maple
    a:= n-> (<<1|1|0>, <0|0|1>, <2|0|0>>^n)[1, 1]:
    seq(a(n), n=0..40);  # Alois P. Heinz, Aug 16 2008
  • Mathematica
    CoefficientList[Series[1/(1-x-2*x^3), {x, 0, 50}], x] (* Jean-François Alcover, Mar 11 2014 *)
    LinearRecurrence[{1, 0, 2}, {1, 1, 1}, 50] (* Robert G. Wilson v, Jul 12 2014 *)
  • PARI
    Vec(1/(1-x-2*x^3)+O(x^50)) \\ Charles R Greathouse IV, Sep 23 2012
    
  • Sage
    (1/(1-x-2*x^3)).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, Jun 22 2019
    

Formula

a(n) = Sum_{k=0..floor(n/2)} C(n-2k, k)*2^k. - Paul Barry, Nov 18 2003
a(n) = Sum_{k=0..n} C(k, floor((n-k)/2))*2^((n-k)/2)*(1+(-1)^(n-k))/2. - Paul Barry, Jan 12 2006
a(n) = term (1,1) in the 3x3 matrix [1,1,0; 0,0,1; 2,0,0]^n. - Alois P. Heinz, Aug 16 2008
G.f.: Q(0)/2, where Q(k) = 1 + 1/(1 - x*(2*k+1 + 2*x^2)/( x*(2*k+2 + 2*x^2) + 1/Q(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Aug 29 2013

A302680 T(n,k)=Number of nXk 0..1 arrays with every element equal to 0, 1, 4 or 6 horizontally, diagonally or antidiagonally adjacent elements, with upper left element zero.

Original entry on oeis.org

1, 2, 2, 3, 3, 4, 5, 3, 4, 8, 8, 5, 8, 6, 16, 13, 7, 12, 7, 9, 32, 21, 13, 18, 20, 11, 14, 64, 34, 23, 40, 30, 33, 18, 22, 128, 55, 37, 94, 76, 63, 64, 29, 35, 256, 89, 63, 184, 217, 187, 125, 121, 47, 56, 512, 144, 109, 358, 509, 661, 453, 257, 231, 76, 90, 1024, 233, 183, 760
Offset: 1

Views

Author

R. H. Hardin, Apr 11 2018

Keywords

Comments

Table starts
...1..2..3...5....8...13....21.....34......55.......89......144.......233
...2..3..3...5....7...13....23.....37......63......109......183.......309
...4..4..8..12...18...40....94....184.....358......760.....1594......3220
...8..6..7..20...30...76...217....509....1189.....3034.....7569.....18274
..16..9.11..33...63..187...661...1837....5075....15661....46975....135191
..32.14.18..64..125..453..2013...6725...21745....80985...295335...1015113
..64.22.29.121..257.1125..6311..25139...96728...439233..1942666...8017639
.128.35.47.231..528.2782.19497..92889..422915..2330640.12480973..61679118
.256.56.76.440.1085.6843.60253.343421.1847358.12346637.80210343.474618407

Examples

			Some solutions for n=5 k=4
..0..1..1..1. .0..1..0..1. .0..0..0..1. .0..1..1..1. .0..0..0..1
..0..1..0..1. .0..1..0..1. .0..1..0..1. .0..1..0..1. .0..1..0..1
..0..1..0..1. .0..0..1..1. .0..1..1..1. .0..1..0..1. .0..1..0..1
..0..1..0..1. .1..1..0..0. .0..1..0..1. .0..1..0..1. .0..1..0..1
..0..0..0..1. .1..0..1..0. .0..1..0..1. .0..1..0..1. .0..1..0..1
		

Crossrefs

Column 1 is A000079(n-1).
Column 2 is A001611(n+1).
Row 1 is A000045(n+1).
Row 2 is A003229(n-1) for n>2.

Formula

Empirical for column k:
k=1: a(n) = 2*a(n-1)
k=2: a(n) = 2*a(n-1) -a(n-3)
k=3: a(n) = a(n-1) +a(n-2) for n>5
k=4: a(n) = a(n-1) +2*a(n-2) -a(n-4) for n>8
k=5: a(n) = a(n-1) +3*a(n-3) +2*a(n-4) +2*a(n-5) for n>10
k=6: a(n) = a(n-1) +2*a(n-2) +4*a(n-3) +a(n-4) -2*a(n-5) -a(n-6) for n>12
k=7: [order 12] for n>19
Empirical for row n:
n=1: a(n) = a(n-1) +a(n-2)
n=2: a(n) = a(n-1) +2*a(n-3) for n>5
n=3: a(n) = a(n-1) +3*a(n-3) +3*a(n-4) for n>7
n=4: a(n) = a(n-1) +a(n-2) +5*a(n-3) +5*a(n-4) -3*a(n-5) -3*a(n-6) +2*a(n-7) for n>11
n=5: [order 11] for n>16
n=6: [order 17] for n>23
n=7: [order 31] for n>38

A303314 T(n,k)=Number of nXk 0..1 arrays with every element equal to 0, 1, 4, 5 or 6 horizontally, diagonally or antidiagonally adjacent elements, with upper left element zero.

Original entry on oeis.org

1, 2, 2, 3, 3, 4, 5, 3, 4, 8, 8, 5, 12, 6, 16, 13, 7, 17, 11, 9, 32, 21, 13, 24, 36, 19, 14, 64, 34, 23, 67, 50, 74, 34, 22, 128, 55, 37, 158, 128, 139, 165, 53, 35, 256, 89, 63, 298, 439, 410, 349, 361, 83, 56, 512, 144, 109, 595, 1085, 1799, 1221, 853, 783, 136, 90, 1024, 233
Offset: 1

Views

Author

R. H. Hardin, Apr 21 2018

Keywords

Comments

Table starts
...1..2...3....5....8....13.....21......34.......55........89........144
...2..3...3....5....7....13.....23......37.......63.......109........183
...4..4..12...17...24....67....158.....298......595......1337.......2863
...8..6..11...36...50...128....439....1085.....2431......6452......17455
..16..9..19...74..139...410...1799....5907....16494.....53290.....184915
..32.14..34..165..349..1221...7096...30280...102683....403872....1783894
..64.22..53..361..853..3453..26184..148313...618149...2955145...16591424
.128.35..83..783.2180.10223.100128..746323..3851318..22515378..159560449
.256.56.136.1710.5525.30247.387892.3784002.23967605.171306353.1539204838

Examples

			Some solutions for n=5 k=4
..0..1..0..0. .0..1..1..1. .0..0..0..1. .0..1..0..0. .0..1..0..1
..0..1..1..1. .0..1..0..1. .0..1..0..1. .0..1..1..1. .0..1..1..1
..0..1..0..1. .0..1..0..1. .0..1..0..1. .0..1..0..1. .0..1..0..1
..0..1..0..1. .0..1..0..1. .0..0..0..1. .0..1..0..1. .0..1..0..1
..0..0..0..1. .0..0..0..1. .1..1..0..1. .0..1..0..1. .0..1..0..1
		

Crossrefs

Column 1 is A000079(n-1).
Column 2 is A001611(n+1).
Row 1 is A000045(n+1).
Row 2 is A003229(n-1) for n>2.

Formula

Empirical for column k:
k=1: a(n) = 2*a(n-1)
k=2: a(n) = 2*a(n-1) -a(n-3)
k=3: a(n) = a(n-1) +a(n-3) +a(n-4) for n>7
k=4: a(n) = a(n-1) +a(n-2) +3*a(n-3) +2*a(n-4) -a(n-5) -2*a(n-6) -a(n-7) for n>10
k=5: a(n) = a(n-1) +9*a(n-3) +2*a(n-4) +4*a(n-5) -10*a(n-6) -6*a(n-7) +4*a(n-9) for n>12
k=6: [order 8] for n>11
k=7: [order 20] for n>23
Empirical for row n:
n=1: a(n) = a(n-1) +a(n-2)
n=2: a(n) = a(n-1) +2*a(n-3) for n>5
n=3: a(n) = a(n-1) +3*a(n-3) +4*a(n-4) for n>7
n=4: a(n) = a(n-1) +a(n-2) +5*a(n-3) +9*a(n-4) -3*a(n-5) -7*a(n-6) -2*a(n-7) for n>11
n=5: [order 12] for n>16
n=6: [order 23] for n>28
n=7: [order 46] for n>51

A183483 T(n,k)=Number of nXk 0..2 arrays with every element equal to either the sum mod 3 of its vertical neighbors or the sum mod 3 of its horizontal neighbors.

Original entry on oeis.org

1, 3, 3, 5, 15, 5, 7, 39, 39, 7, 13, 135, 117, 135, 13, 23, 495, 587, 587, 495, 23, 37, 1647, 2925, 4015, 2925, 1647, 37, 63, 5751, 12131, 40073, 40073, 12131, 5751, 63, 109, 20223, 58333, 270549, 706473, 270549, 58333, 20223, 109, 183, 70119, 270611
Offset: 1

Views

Author

R. H. Hardin Jan 05 2011

Keywords

Comments

Table starts
...1......3.......5.........7..........13..........23..........37..........63
...3.....15......39.......135.........495........1647........5751.......20223
...5.....39.....117.......587........2925.......12131.......58333......270611
...7....135.....587......4015.......40073......270549.....1942323....15984991
..13....495....2925.....40073......706473.....7773025...107741253..1577932971
..23...1647...12131....270549.....7773025...116198719..2519745049.56697667073
..37...5751...58333...1942323...107741253..2519745049.84056287173
..63..20223..270611..15984991..1577932971.56697667073
.109..70119.1220877.119888365.20728674493
.183.244863.5724163.894632985

Examples

			Some solutions for 5X4
..2..2..0..0....0..0..2..2....1..1..0..0....0..0..0..0....1..2..1..2
..0..0..0..0....2..0..1..1....0..0..0..0....1..2..1..2....1..1..0..2
..2..0..1..0....2..0..2..2....2..0..0..0....1..1..1..2....0..0..0..0
..2..0..1..0....0..0..0..0....2..0..1..1....2..2..0..0....1..0..1..2
..0..0..0..0....0..0..2..2....0..0..0..0....2..2..2..0....1..0..1..2
		

Crossrefs

Column 1 is A003229

A183526 T(n,k)=Number of nXk 0..2 arrays with each element equal to either the sum mod 3 of its horizontal and vertical neighbors or the sum mod 3 of its diagonal and antidiagonal neighbors.

Original entry on oeis.org

1, 3, 3, 5, 9, 5, 7, 31, 31, 7, 13, 95, 101, 95, 13, 23, 309, 543, 543, 309, 23, 37, 911, 2233, 3507, 2233, 911, 37, 63, 2803, 10003, 27609, 27609, 10003, 2803, 63, 109, 8673, 47685, 201833, 371691, 201833, 47685, 8673, 109, 183, 26619, 215451, 1521573, 4406933
Offset: 1

Views

Author

R. H. Hardin Jan 05 2011

Keywords

Comments

Table starts
...1.....3.......5........7........13.........23.........37........63
...3.....9......31.......95.......309........911.......2803......8673
...5....31.....101......543......2233......10003......47685....215451
...7....95.....543.....3507.....27609.....201833....1521573..11678037
..13...309....2233....27609....371691....4406933...56562977.728459961
..23...911...10003...201833...4406933...89738569.1908431611
..37..2803...47685..1521573..56562977.1908431611
..63..8673..215451.11678037.728459961
.109.26619..994397.89238523
.183.81959.4603823

Examples

			Some solutions for 4X3
..1..2..1....0..2..0....2..2..0....2..1..2....1..0..0....2..0..1....0..2..2
..0..1..2....1..0..1....0..0..0....2..2..2....0..1..0....2..0..1....1..2..1
..2..1..0....2..2..2....2..1..1....1..0..1....0..0..0....0..2..0....2..1..0
..1..2..1....1..2..2....1..2..0....0..2..0....2..2..0....2..0..0....1..0..1
		

Crossrefs

Column 1 is A003229

A143453 Square array A(n,k) of numbers of length n ternary words with at least k 0-digits between any other digits (n,k >= 0), read by antidiagonals.

Original entry on oeis.org

1, 1, 3, 1, 3, 9, 1, 3, 5, 27, 1, 3, 5, 11, 81, 1, 3, 5, 7, 21, 243, 1, 3, 5, 7, 13, 43, 729, 1, 3, 5, 7, 9, 23, 85, 2187, 1, 3, 5, 7, 9, 15, 37, 171, 6561, 1, 3, 5, 7, 9, 11, 25, 63, 341, 19683, 1, 3, 5, 7, 9, 11, 17, 39, 109, 683, 59049, 1, 3, 5, 7, 9, 11, 13, 27, 57, 183, 1365, 177147
Offset: 0

Views

Author

Alois P. Heinz, Aug 16 2008

Keywords

Examples

			A(3,1) = 11, because 11 ternary words of length 3 have at least 1 0-digit between any other digits: 000, 001, 002, 010, 020, 100, 101, 102, 200, 201, 202.
Square array A(n,k) begins:
     1,   1,  1,  1,  1,  1,  1,  1, ...
     3,   3,  3,  3,  3,  3,  3,  3, ...
     9,   5,  5,  5,  5,  5,  5,  5, ...
    27,  11,  7,  7,  7,  7,  7,  7, ...
    81,  21, 13,  9,  9,  9,  9,  9, ...
   243,  43, 23, 15, 11, 11, 11, 11, ...
   729,  85, 37, 25, 17, 13, 13, 13, ...
  2187, 171, 63, 39, 27, 19, 15, 15, ...
		

Crossrefs

Column k=0: A000244, k=1: A001045(n+2), k=2: A003229(n+1) and A077949(n+2), k=3: A052942(n+3), k=4: A143447, k=5: A143448, k=6: A143449, k=7: A143450, k=8: A143451, k=9: A143452.
Diagonal: A005408.

Programs

  • Maple
    A := proc (n::nonnegint, k::nonnegint) option remember; if k=0 then 3^n elif n<=k+1 then 2*n+1 else A(n-1, k) +2*A(n-k-1, k) fi end: seq(seq(A(n,d-n), n=0..d), d=0..14);
  • Mathematica
    a[n_, 0] := 3^n; a[n_, k_] /; n <= k+1 := 2*n+1; a[n_, k_] := a[n, k] = a[n-1, k] + 2*a[n-k-1, k]; Table[a[n-k, k], {n, 0, 14}, {k, n, 0, -1}] // Flatten (* Jean-François Alcover, Dec 11 2013 *)

Formula

G.f. of column k: 1/(x^k*(1-x-2*x^(k+1))).
A(n,k) = 3^n if k=0, else A(n,k) = 2*n+1 if n<=k+1, else A(n,k) = A(n-1,k) + 2*A(n-k-1,k).

A183342 T(n,k)=Number of nXk binary arrays with each 1 adjacent to exactly one 1 vertically and one 1 horizontally.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 4, 5, 4, 1, 1, 6, 7, 7, 6, 1, 1, 9, 13, 12, 13, 9, 1, 1, 13, 23, 26, 26, 23, 13, 1, 1, 19, 37, 51, 72, 51, 37, 19, 1, 1, 28, 63, 97, 175, 175, 97, 63, 28, 1, 1, 41, 109, 193, 407, 513, 407, 193, 109, 41, 1, 1, 60, 183, 380, 1005, 1397, 1397, 1005, 380
Offset: 1

Views

Author

R. H. Hardin Jan 04 2011

Keywords

Comments

Equivalent to all 1s connected only in 2X2 blocks
Table starts
.1..1...1...1....1.....1......1.......1.......1........1.........1..........1
.1..2...3...4....6.....9.....13......19......28.......41........60.........88
.1..3...5...7...13....23.....37......63.....109......183.......309........527
.1..4...7..12...26....51.....97.....193.....380......741......1456.......2860
.1..6..13..26...72...175....407....1005....2450.....5893.....14318......34780
.1..9..23..51..175...513...1397....4133...12075....34521....100047.....290287
.1.13..37..97..407..1397...4531...16029...55471...188735....651517....2246015
.1.19..63.193.1005..4133..16029...68662..286079..1170324...4869491...20218182
.1.28.109.380.2450.12075..55471..286079.1429824..6989477..34856362..173451524
.1.41.183.741.5893.34521.188735.1170324.6989477.40840428.243887497.1451641573

Examples

			Some solutions for 6X5
..0..0..0..0..0....0..0..0..0..0....0..0..0..0..0....0..0..0..0..0
..0..0..0..0..0....0..0..1..1..0....1..1..0..0..0....0..0..0..0..0
..0..0..1..1..0....0..0..1..1..0....1..1..0..0..0....0..0..0..0..0
..0..0..1..1..0....0..0..0..0..0....0..0..0..0..0....0..0..0..0..0
..0..0..0..0..0....1..1..0..0..0....0..0..0..0..0....0..1..1..0..0
..0..0..0..0..0....1..1..0..0..0....0..0..0..0..0....0..1..1..0..0
		

Crossrefs

Diagonal is A145857
Column 2 is A000930(n+1)
Column 3 is A003229

A289265 Decimal expansion of the real root of x^3 - x^2 - 2 = 0.

Original entry on oeis.org

1, 6, 9, 5, 6, 2, 0, 7, 6, 9, 5, 5, 9, 8, 6, 2, 0, 5, 7, 4, 1, 6, 3, 6, 7, 1, 0, 0, 1, 1, 7, 5, 3, 5, 3, 4, 2, 6, 1, 8, 1, 7, 9, 3, 8, 8, 2, 0, 8, 5, 0, 7, 7, 3, 0, 2, 2, 1, 8, 7, 0, 7, 2, 8, 4, 4, 5, 2, 4, 4, 5, 3, 4, 5, 4, 0, 8, 0, 0, 7, 2, 2, 1, 3, 9, 9
Offset: 1

Views

Author

Clark Kimberling, Jul 14 2017

Keywords

Examples

			1.6956207695598620574163671001175353426181793882085077...
		

References

  • D. E. Daykin and S. J. Tucker, Introduction to Dragon Curves, unpublished, 1976, end of section 2. See links in A003229.

Crossrefs

Cf. A078140 (includes guide to constants similar to A289260).

Programs

  • Mathematica
    z = 2000; r = 8/5;
    u = CoefficientList[Series[1/Sum[Floor[(k + 1)*r] (-x)^k, {k, 0, z}], {x, 0, z}], x];  (* A289260 *)
    v = N[u[[z]]/u[[z - 1]], 200]
    RealDigits[v, 10][[1]] (* A289265 *)
  • PARI
    solve(x=1, 2, x^3 - x^2 - 2) \\ Michel Marcus, Oct 26 2019

Formula

r = D^(1/3) + (1/9)*D^(-1/3) + 1/3 where D = 28/27 + (1/9)*sqrt(29*3) [Chang and Zhang] from the usual cubic solution formula. Or similarly r = (1/3)*(1 + C + 1/C) where C = (28 + sqrt(29*27))^(1/3). - Kevin Ryde, Oct 25 2019

A303719 T(n,k)=Number of nXk 0..1 arrays with every element unequal to 0, 1 or 5 king-move adjacent elements, with upper left element zero.

Original entry on oeis.org

1, 2, 2, 3, 1, 3, 5, 3, 3, 5, 8, 5, 5, 5, 8, 13, 7, 8, 8, 7, 13, 21, 13, 14, 17, 14, 13, 21, 34, 23, 24, 36, 36, 24, 23, 34, 55, 37, 40, 76, 81, 76, 40, 37, 55, 89, 63, 68, 161, 169, 169, 161, 68, 63, 89, 144, 109, 116, 349, 361, 343, 361, 349, 116, 109, 144, 233, 183, 196, 749
Offset: 1

Views

Author

R. H. Hardin, Apr 29 2018

Keywords

Comments

Table starts
..1..2...3...5....8...13...21....34....55....89....144....233....377.....610
..2..1...3...5....7...13...23....37....63...109....183....309....527.....893
..3..3...5...8...14...24...40....68...116...196....332....564....956....1620
..5..5...8..17...36...76..161...349...749..1604...3449...7412..15912...34177
..8..7..14..36...81..169..361...784..1681..3600...7744..16641..35721...76729
.13.13..24..76..169..343..741..1618..3451..7390..15924..34201..73387..157681
.21.23..40.161..361..741.1592..3469..7416.15880..34193..73457.157645..338676
.34.37..68.349..784.1618.3469..7551.16159.34602..74481.160024.343450..737809
.55.63.116.749.1681.3451.7416.16159.34546.73974.159281.342185.734359.1577656

Examples

			Some solutions for n=5 k=4
..0..0..1..0. .0..0..1..0. .0..0..0..0. .0..0..0..0. .0..0..0..0
..0..0..0..0. .0..0..0..0. .1..0..0..0. .1..0..0..0. .0..0..0..0
..0..0..0..0. .0..0..0..0. .0..0..0..0. .0..0..0..0. .0..0..0..0
..1..0..0..1. .0..0..0..0. .0..0..0..1. .0..0..0..0. .0..0..0..0
..0..0..0..0. .0..0..0..0. .0..0..0..0. .0..0..0..0. .0..1..0..0
		

Crossrefs

Column 1 is A000045(n+1).
Column 2 is A003229(n-1).

Formula

Empirical for diagonal:
Diagonal: [linear recurrence of order 15] for n>18
Empirical for column k:
k=1: a(n) = a(n-1) +a(n-2)
k=2: a(n) = a(n-1) +2*a(n-3) for n>4
k=3: a(n) = a(n-1) +2*a(n-3) for n>4
k=4: a(n) = a(n-1) +a(n-2) +3*a(n-3) +a(n-4) -a(n-5) -a(n-6)
k=5: a(n) = a(n-1) +a(n-2) +3*a(n-3) +a(n-4) -a(n-5) -a(n-6) for n>9
k=6: a(n) = a(n-1) +a(n-2) +3*a(n-3) +a(n-4) -a(n-5) -a(n-6) for n>9
k=7: a(n) = a(n-1) +a(n-2) +3*a(n-3) +a(n-4) -a(n-5) -a(n-6) for n>9

A304270 T(n,k)=Number of nXk 0..1 arrays with every element unequal to 0, 1, 5 or 8 king-move adjacent elements, with upper left element zero.

Original entry on oeis.org

1, 2, 2, 3, 1, 3, 5, 3, 3, 5, 8, 5, 6, 5, 8, 13, 7, 10, 10, 7, 13, 21, 13, 19, 21, 19, 13, 21, 34, 23, 37, 50, 50, 37, 23, 34, 55, 37, 67, 116, 146, 116, 67, 37, 55, 89, 63, 124, 259, 404, 404, 259, 124, 63, 89, 144, 109, 235, 601, 1074, 1246, 1074, 601, 235, 109, 144, 233
Offset: 1

Views

Author

R. H. Hardin, May 09 2018

Keywords

Comments

Table starts
..1..2...3....5....8....13.....21......34......55.......89.......144.......233
..2..1...3....5....7....13.....23......37......63......109.......183.......309
..3..3...6...10...19....37.....67.....124.....235......436.......808......1513
..5..5..10...21...50...116....259.....601....1397.....3196......7359.....17016
..8..7..19...50..146...404...1074....2990....8316....22660.....62314....172244
.13.13..37..116..404..1246...3788...12342...39252...122156....388150...1234248
.21.23..67..259.1074..3788..13767...53839..201274...741275...2806825..10575217
.34.37.124..601.2990.12342..53839..252509.1118021..4901568..22174589..99427544
.55.63.235.1397.8316.39252.201274.1118021.5755625.29475545.156881417.822798993

Examples

			Some solutions for n=5 k=4
..0..1..0..0. .0..0..0..0. .0..0..0..0. .0..0..1..0. .0..0..0..0
..0..0..0..0. .1..0..0..1. .0..0..0..0. .0..0..0..0. .0..0..0..0
..0..0..0..0. .0..0..0..0. .1..0..0..0. .0..0..0..0. .0..1..0..0
..0..0..0..0. .0..0..0..0. .0..0..0..0. .0..0..0..0. .0..0..0..0
..0..1..0..0. .0..0..0..0. .0..0..0..0. .0..0..1..0. .0..0..0..0
		

Crossrefs

Column 1 is A000045(n+1).
Column 2 is A003229(n-1).

Formula

Empirical for column k:
k=1: a(n) = a(n-1) +a(n-2)
k=2: a(n) = a(n-1) +2*a(n-3) for n>4
k=3: a(n) = a(n-1) +3*a(n-3) for n>4
k=4: a(n) = a(n-1) +a(n-2) +5*a(n-3) +a(n-4) -3*a(n-5) -3*a(n-6) for n>7
k=5: [order 9] for n>10
k=6: [order 12] for n>13
k=7: [order 24] for n>25
Showing 1-10 of 22 results. Next