A077949
Expansion of 1/(1-x-2*x^3).
Original entry on oeis.org
1, 1, 1, 3, 5, 7, 13, 23, 37, 63, 109, 183, 309, 527, 893, 1511, 2565, 4351, 7373, 12503, 21205, 35951, 60957, 103367, 175269, 297183, 503917, 854455, 1448821, 2456655, 4165565, 7063207, 11976517, 20307647, 34434061, 58387095, 99002389, 167870511, 284644701
Offset: 0
-
a:=[1,1,1];; for n in [4..30] do a[n]:=a[n-1]+2*a[n-3]; od; a; # G. C. Greubel, Jun 22 2019
-
[n le 3 select 1 else Self(n-1)+2*Self(n-3): n in [1..50]]; // Vincenzo Librandi, Mar 13 2014
-
a:= n-> (<<1|1|0>, <0|0|1>, <2|0|0>>^n)[1, 1]:
seq(a(n), n=0..40); # Alois P. Heinz, Aug 16 2008
-
CoefficientList[Series[1/(1-x-2*x^3), {x, 0, 50}], x] (* Jean-François Alcover, Mar 11 2014 *)
LinearRecurrence[{1, 0, 2}, {1, 1, 1}, 50] (* Robert G. Wilson v, Jul 12 2014 *)
-
Vec(1/(1-x-2*x^3)+O(x^50)) \\ Charles R Greathouse IV, Sep 23 2012
-
(1/(1-x-2*x^3)).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, Jun 22 2019
A302680
T(n,k)=Number of nXk 0..1 arrays with every element equal to 0, 1, 4 or 6 horizontally, diagonally or antidiagonally adjacent elements, with upper left element zero.
Original entry on oeis.org
1, 2, 2, 3, 3, 4, 5, 3, 4, 8, 8, 5, 8, 6, 16, 13, 7, 12, 7, 9, 32, 21, 13, 18, 20, 11, 14, 64, 34, 23, 40, 30, 33, 18, 22, 128, 55, 37, 94, 76, 63, 64, 29, 35, 256, 89, 63, 184, 217, 187, 125, 121, 47, 56, 512, 144, 109, 358, 509, 661, 453, 257, 231, 76, 90, 1024, 233, 183, 760
Offset: 1
Some solutions for n=5 k=4
..0..1..1..1. .0..1..0..1. .0..0..0..1. .0..1..1..1. .0..0..0..1
..0..1..0..1. .0..1..0..1. .0..1..0..1. .0..1..0..1. .0..1..0..1
..0..1..0..1. .0..0..1..1. .0..1..1..1. .0..1..0..1. .0..1..0..1
..0..1..0..1. .1..1..0..0. .0..1..0..1. .0..1..0..1. .0..1..0..1
..0..0..0..1. .1..0..1..0. .0..1..0..1. .0..1..0..1. .0..1..0..1
A303314
T(n,k)=Number of nXk 0..1 arrays with every element equal to 0, 1, 4, 5 or 6 horizontally, diagonally or antidiagonally adjacent elements, with upper left element zero.
Original entry on oeis.org
1, 2, 2, 3, 3, 4, 5, 3, 4, 8, 8, 5, 12, 6, 16, 13, 7, 17, 11, 9, 32, 21, 13, 24, 36, 19, 14, 64, 34, 23, 67, 50, 74, 34, 22, 128, 55, 37, 158, 128, 139, 165, 53, 35, 256, 89, 63, 298, 439, 410, 349, 361, 83, 56, 512, 144, 109, 595, 1085, 1799, 1221, 853, 783, 136, 90, 1024, 233
Offset: 1
Some solutions for n=5 k=4
..0..1..0..0. .0..1..1..1. .0..0..0..1. .0..1..0..0. .0..1..0..1
..0..1..1..1. .0..1..0..1. .0..1..0..1. .0..1..1..1. .0..1..1..1
..0..1..0..1. .0..1..0..1. .0..1..0..1. .0..1..0..1. .0..1..0..1
..0..1..0..1. .0..1..0..1. .0..0..0..1. .0..1..0..1. .0..1..0..1
..0..0..0..1. .0..0..0..1. .1..1..0..1. .0..1..0..1. .0..1..0..1
A183483
T(n,k)=Number of nXk 0..2 arrays with every element equal to either the sum mod 3 of its vertical neighbors or the sum mod 3 of its horizontal neighbors.
Original entry on oeis.org
1, 3, 3, 5, 15, 5, 7, 39, 39, 7, 13, 135, 117, 135, 13, 23, 495, 587, 587, 495, 23, 37, 1647, 2925, 4015, 2925, 1647, 37, 63, 5751, 12131, 40073, 40073, 12131, 5751, 63, 109, 20223, 58333, 270549, 706473, 270549, 58333, 20223, 109, 183, 70119, 270611
Offset: 1
Some solutions for 5X4
..2..2..0..0....0..0..2..2....1..1..0..0....0..0..0..0....1..2..1..2
..0..0..0..0....2..0..1..1....0..0..0..0....1..2..1..2....1..1..0..2
..2..0..1..0....2..0..2..2....2..0..0..0....1..1..1..2....0..0..0..0
..2..0..1..0....0..0..0..0....2..0..1..1....2..2..0..0....1..0..1..2
..0..0..0..0....0..0..2..2....0..0..0..0....2..2..2..0....1..0..1..2
A183526
T(n,k)=Number of nXk 0..2 arrays with each element equal to either the sum mod 3 of its horizontal and vertical neighbors or the sum mod 3 of its diagonal and antidiagonal neighbors.
Original entry on oeis.org
1, 3, 3, 5, 9, 5, 7, 31, 31, 7, 13, 95, 101, 95, 13, 23, 309, 543, 543, 309, 23, 37, 911, 2233, 3507, 2233, 911, 37, 63, 2803, 10003, 27609, 27609, 10003, 2803, 63, 109, 8673, 47685, 201833, 371691, 201833, 47685, 8673, 109, 183, 26619, 215451, 1521573, 4406933
Offset: 1
Some solutions for 4X3
..1..2..1....0..2..0....2..2..0....2..1..2....1..0..0....2..0..1....0..2..2
..0..1..2....1..0..1....0..0..0....2..2..2....0..1..0....2..0..1....1..2..1
..2..1..0....2..2..2....2..1..1....1..0..1....0..0..0....0..2..0....2..1..0
..1..2..1....1..2..2....1..2..0....0..2..0....2..2..0....2..0..0....1..0..1
A143453
Square array A(n,k) of numbers of length n ternary words with at least k 0-digits between any other digits (n,k >= 0), read by antidiagonals.
Original entry on oeis.org
1, 1, 3, 1, 3, 9, 1, 3, 5, 27, 1, 3, 5, 11, 81, 1, 3, 5, 7, 21, 243, 1, 3, 5, 7, 13, 43, 729, 1, 3, 5, 7, 9, 23, 85, 2187, 1, 3, 5, 7, 9, 15, 37, 171, 6561, 1, 3, 5, 7, 9, 11, 25, 63, 341, 19683, 1, 3, 5, 7, 9, 11, 17, 39, 109, 683, 59049, 1, 3, 5, 7, 9, 11, 13, 27, 57, 183, 1365, 177147
Offset: 0
A(3,1) = 11, because 11 ternary words of length 3 have at least 1 0-digit between any other digits: 000, 001, 002, 010, 020, 100, 101, 102, 200, 201, 202.
Square array A(n,k) begins:
1, 1, 1, 1, 1, 1, 1, 1, ...
3, 3, 3, 3, 3, 3, 3, 3, ...
9, 5, 5, 5, 5, 5, 5, 5, ...
27, 11, 7, 7, 7, 7, 7, 7, ...
81, 21, 13, 9, 9, 9, 9, 9, ...
243, 43, 23, 15, 11, 11, 11, 11, ...
729, 85, 37, 25, 17, 13, 13, 13, ...
2187, 171, 63, 39, 27, 19, 15, 15, ...
-
A := proc (n::nonnegint, k::nonnegint) option remember; if k=0 then 3^n elif n<=k+1 then 2*n+1 else A(n-1, k) +2*A(n-k-1, k) fi end: seq(seq(A(n,d-n), n=0..d), d=0..14);
-
a[n_, 0] := 3^n; a[n_, k_] /; n <= k+1 := 2*n+1; a[n_, k_] := a[n, k] = a[n-1, k] + 2*a[n-k-1, k]; Table[a[n-k, k], {n, 0, 14}, {k, n, 0, -1}] // Flatten (* Jean-François Alcover, Dec 11 2013 *)
A183342
T(n,k)=Number of nXk binary arrays with each 1 adjacent to exactly one 1 vertically and one 1 horizontally.
Original entry on oeis.org
1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 4, 5, 4, 1, 1, 6, 7, 7, 6, 1, 1, 9, 13, 12, 13, 9, 1, 1, 13, 23, 26, 26, 23, 13, 1, 1, 19, 37, 51, 72, 51, 37, 19, 1, 1, 28, 63, 97, 175, 175, 97, 63, 28, 1, 1, 41, 109, 193, 407, 513, 407, 193, 109, 41, 1, 1, 60, 183, 380, 1005, 1397, 1397, 1005, 380
Offset: 1
Some solutions for 6X5
..0..0..0..0..0....0..0..0..0..0....0..0..0..0..0....0..0..0..0..0
..0..0..0..0..0....0..0..1..1..0....1..1..0..0..0....0..0..0..0..0
..0..0..1..1..0....0..0..1..1..0....1..1..0..0..0....0..0..0..0..0
..0..0..1..1..0....0..0..0..0..0....0..0..0..0..0....0..0..0..0..0
..0..0..0..0..0....1..1..0..0..0....0..0..0..0..0....0..1..1..0..0
..0..0..0..0..0....1..1..0..0..0....0..0..0..0..0....0..1..1..0..0
A289265
Decimal expansion of the real root of x^3 - x^2 - 2 = 0.
Original entry on oeis.org
1, 6, 9, 5, 6, 2, 0, 7, 6, 9, 5, 5, 9, 8, 6, 2, 0, 5, 7, 4, 1, 6, 3, 6, 7, 1, 0, 0, 1, 1, 7, 5, 3, 5, 3, 4, 2, 6, 1, 8, 1, 7, 9, 3, 8, 8, 2, 0, 8, 5, 0, 7, 7, 3, 0, 2, 2, 1, 8, 7, 0, 7, 2, 8, 4, 4, 5, 2, 4, 4, 5, 3, 4, 5, 4, 0, 8, 0, 0, 7, 2, 2, 1, 3, 9, 9
Offset: 1
1.6956207695598620574163671001175353426181793882085077...
- D. E. Daykin and S. J. Tucker, Introduction to Dragon Curves, unpublished, 1976, end of section 2. See links in A003229.
Sequences growing as this power:
A003229,
A003476,
A003479,
A052537,
A077949,
A144181,
A164395,
A164399,
A164410,
A164414,
A164471,
A203175,
A227036,
A289260,
A292764.
-
z = 2000; r = 8/5;
u = CoefficientList[Series[1/Sum[Floor[(k + 1)*r] (-x)^k, {k, 0, z}], {x, 0, z}], x]; (* A289260 *)
v = N[u[[z]]/u[[z - 1]], 200]
RealDigits[v, 10][[1]] (* A289265 *)
-
solve(x=1, 2, x^3 - x^2 - 2) \\ Michel Marcus, Oct 26 2019
A303719
T(n,k)=Number of nXk 0..1 arrays with every element unequal to 0, 1 or 5 king-move adjacent elements, with upper left element zero.
Original entry on oeis.org
1, 2, 2, 3, 1, 3, 5, 3, 3, 5, 8, 5, 5, 5, 8, 13, 7, 8, 8, 7, 13, 21, 13, 14, 17, 14, 13, 21, 34, 23, 24, 36, 36, 24, 23, 34, 55, 37, 40, 76, 81, 76, 40, 37, 55, 89, 63, 68, 161, 169, 169, 161, 68, 63, 89, 144, 109, 116, 349, 361, 343, 361, 349, 116, 109, 144, 233, 183, 196, 749
Offset: 1
Some solutions for n=5 k=4
..0..0..1..0. .0..0..1..0. .0..0..0..0. .0..0..0..0. .0..0..0..0
..0..0..0..0. .0..0..0..0. .1..0..0..0. .1..0..0..0. .0..0..0..0
..0..0..0..0. .0..0..0..0. .0..0..0..0. .0..0..0..0. .0..0..0..0
..1..0..0..1. .0..0..0..0. .0..0..0..1. .0..0..0..0. .0..0..0..0
..0..0..0..0. .0..0..0..0. .0..0..0..0. .0..0..0..0. .0..1..0..0
A304270
T(n,k)=Number of nXk 0..1 arrays with every element unequal to 0, 1, 5 or 8 king-move adjacent elements, with upper left element zero.
Original entry on oeis.org
1, 2, 2, 3, 1, 3, 5, 3, 3, 5, 8, 5, 6, 5, 8, 13, 7, 10, 10, 7, 13, 21, 13, 19, 21, 19, 13, 21, 34, 23, 37, 50, 50, 37, 23, 34, 55, 37, 67, 116, 146, 116, 67, 37, 55, 89, 63, 124, 259, 404, 404, 259, 124, 63, 89, 144, 109, 235, 601, 1074, 1246, 1074, 601, 235, 109, 144, 233
Offset: 1
Some solutions for n=5 k=4
..0..1..0..0. .0..0..0..0. .0..0..0..0. .0..0..1..0. .0..0..0..0
..0..0..0..0. .1..0..0..1. .0..0..0..0. .0..0..0..0. .0..0..0..0
..0..0..0..0. .0..0..0..0. .1..0..0..0. .0..0..0..0. .0..1..0..0
..0..0..0..0. .0..0..0..0. .0..0..0..0. .0..0..0..0. .0..0..0..0
..0..1..0..0. .0..0..0..0. .0..0..0..0. .0..0..1..0. .0..0..0..0
Showing 1-10 of 22 results.
Comments