cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 14 results. Next

A013609 Triangle of coefficients in expansion of (1+2*x)^n.

Original entry on oeis.org

1, 1, 2, 1, 4, 4, 1, 6, 12, 8, 1, 8, 24, 32, 16, 1, 10, 40, 80, 80, 32, 1, 12, 60, 160, 240, 192, 64, 1, 14, 84, 280, 560, 672, 448, 128, 1, 16, 112, 448, 1120, 1792, 1792, 1024, 256, 1, 18, 144, 672, 2016, 4032, 5376, 4608, 2304, 512, 1, 20, 180, 960, 3360, 8064, 13440, 15360, 11520, 5120, 1024
Offset: 0

Views

Author

Keywords

Comments

T(n,k) is the number of lattice paths from (0,0) to (n,k) with steps (1,0) and two kinds of steps (1,1). The number of paths with steps (1,0) and s kinds of steps (1,1) corresponds to the expansion of (1+s*x)^n. - Joerg Arndt, Jul 01 2011
Also sum of rows in A046816. - Lior Manor, Apr 24 2004
Also square array of unsigned coefficients of Chebyshev polynomials of second kind. - Philippe Deléham, Aug 12 2005
The rows give the number of k-simplices in the n-cube. For example, 1, 6, 12, 8 shows that the 3-cube has 1 volume, 6 faces, 12 edges and 8 vertices. - Joshua Zucker, Jun 05 2006
Triangle whose (i, j)-th entry is binomial(i, j)*2^j.
With offset [1,1] the triangle with doubled numbers, 2*a(n,m), enumerates sequences of length m with nonzero integer entries n_i satisfying sum(|n_i|) <= n. Example n=4, m=2: [1,3], [3,1], [2,2] each in 2^2=4 signed versions: 2*a(4,2) = 2*6 = 12. The Sum over m (row sums of 2*a(n,m)) gives 2*3^(n-1), n >= 1. See the W. Lang comment and a K. A. Meissner reference under A024023. - Wolfdieter Lang, Jan 21 2008
n-th row of the triangle = leftmost column of nonzero terms of X^n, where X = an infinite bidiagonal matrix with (1,1,1,...) in the main diagonal and (2,2,2,...) in the subdiagonal. - Gary W. Adamson, Jul 19 2008
Numerators of a matrix square-root of Pascal's triangle A007318, where the denominators for the n-th row are set to 2^n. - Gerald McGarvey, Aug 20 2009
From Johannes W. Meijer, Sep 22 2010: (Start)
The triangle sums (see A180662 for their definitions) link the Pell-Jacobsthal triangle, whose mirror image is A038207, with twenty-four different sequences; see the crossrefs.
This triangle may very well be called the Pell-Jacobsthal triangle in view of the fact that A000129 (Kn21) are the Pell numbers and A001045 (Kn11) the Jacobsthal numbers.
(End)
T(n,k) equals the number of n-length words on {0,1,2} having n-k zeros. - Milan Janjic, Jul 24 2015
T(n-1,k-1) is the number of 2-compositions of n with zeros having k positive parts; see Hopkins & Ouvry reference. - Brian Hopkins, Aug 16 2020
T(n,k) is the number of chains 0=x_0Geoffrey Critzer, Oct 01 2022
Excluding the initial 1, T(n,k) is the number of k-faces of a regular n-cross polytope. See A038207 for n-cube and A135278 for n-simplex. - Mohammed Yaseen, Jan 14 2023

Examples

			Triangle begins:
  1;
  1,  2;
  1,  4,   4;
  1,  6,  12,    8;
  1,  8,  24,   32,   16;
  1, 10,  40,   80,   80,    32;
  1, 12,  60,  160,  240,   192,    64;
  1, 14,  84,  280,  560,   672,   448,    128;
  1, 16, 112,  448, 1120,  1792,  1792,   1024,    256;
  1, 18, 144,  672, 2016,  4032,  5376,   4608,   2304,    512;
  1, 20, 180,  960, 3360,  8064, 13440,  15360,  11520,   5120,  1024;
  1, 22, 220, 1320, 5280, 14784, 29568,  42240,  42240,  28160, 11264,  2048;
  1, 24, 264, 1760, 7920, 25344, 59136, 101376, 126720, 112640, 67584, 24576, 4096;
From _Peter Bala_, Apr 20 2012: (Start)
The triangle can be written as the matrix product A038207*(signed version of A013609).
  |.1................||.1..................|
  |.2...1............||-1...2..............|
  |.4...4...1........||.1..-4...4..........|
  |.8..12...6...1....||-1...6...-12...8....|
  |16..32..24...8...1||.1..-8....24.-32..16|
  |..................||....................|
(End)
		

References

  • B. N. Cyvin et al., Isomer enumeration of unbranched catacondensed polygonal systems with pentagons and heptagons, Match, No. 34 (Oct 1996), pp. 109-121.
  • G. Hotz, Zur Reduktion von Schaltkreispolynomen im Hinblick auf eine Verwendung in Rechenautomaten, El. Datenverarbeitung, Folge 5 (1960), pp. 21-27.

Crossrefs

Cf. A007318, A013610, etc.
Appears in A167580 and A167591. - Johannes W. Meijer, Nov 23 2009
From Johannes W. Meijer, Sep 22 2010: (Start)
Triangle sums (see the comments): A000244 (Row1); A000012 (Row2); A001045 (Kn11); A026644 (Kn12); 4*A011377 (Kn13); A000129 (Kn21); A094706 (Kn22); A099625 (Kn23); A001653 (Kn3); A007583 (Kn4); A046717 (Fi1); A007051 (Fi2); A077949 (Ca1); A008998 (Ca2); A180675 (Ca3); A092467 (Ca4); A052942 (Gi1); A008999 (Gi2); A180676 (Gi3); A180677 (Gi4); A140413 (Ze1); A180678 (Ze2); A097117 (Ze3); A055588 (Ze4).
(End)
T(2n,n) gives A059304.

Programs

  • Haskell
    a013609 n = a013609_list !! n
    a013609_list = concat $ iterate ([1,2] *) [1]
    instance Num a => Num [a] where
       fromInteger k = [fromInteger k]
       (p:ps) + (q:qs) = p + q : ps + qs
       ps + qs         = ps ++ qs
       (p:ps) * qs'@(q:qs) = p * q : ps * qs' + [p] * qs
        *                = []
    -- Reinhard Zumkeller, Apr 02 2011
    
  • Haskell
    a013609 n k = a013609_tabl !! n !! k
    a013609_row n = a013609_tabl !! n
    a013609_tabl = iterate (\row -> zipWith (+) ([0] ++ row) $
                                    zipWith (+) ([0] ++ row) (row ++ [0])) [1]
    -- Reinhard Zumkeller, Jul 22 2013, Feb 27 2013
    
  • Magma
    [2^k*Binomial(n,k): k in [0..n], n in [0..15]]; // G. C. Greubel, Sep 17 2021
    
  • Maple
    bin2:=proc(n,k) option remember; if k<0 or k>n then 0 elif k=0 then 1 else 2*bin2(n-1,k-1)+bin2(n-1,k); fi; end; # N. J. A. Sloane, Jun 01 2009
  • Mathematica
    Flatten[Table[CoefficientList[(1 + 2*x)^n, x], {n, 0, 10}]][[1 ;; 59]] (* Jean-François Alcover, May 17 2011 *)
    BinomialROW[n_, k_, t_] := Sum[Binomial[n, k]*Binomial[k, j]*(-1)^(k - j)*t^j, {j, 0, k}]; Column[Table[BinomialROW[n, k, 3], {n, 0, 10}, {k, 0, n}], Center] (* Kolosov Petro, Jan 28 2019 *)
  • Maxima
    a(n,k):=coeff(expand((1+2*x)^n),x^k);
    create_list(a(n,k),n,0,6,k,0,n); /* Emanuele Munarini, Nov 21 2012 */
    
  • PARI
    /* same as in A092566 but use */
    steps=[[1,0], [1,1], [1,1]]; /* note double [1,1] */
    /* Joerg Arndt, Jul 01 2011 */
    
  • Sage
    flatten([[2^k*binomial(n,k) for k in (0..n)] for n in (0..15)]) # G. C. Greubel, Sep 17 2021

Formula

G.f.: 1 / (1 - x*(1+2*y)).
T(n,k) = 2^k*binomial(n,k).
T(n,k) = 2*T(n-1,k-1) + T(n-1,k). - Jon Perry, Nov 22 2005
Row sums are 3^n = A000244(n). - Joerg Arndt, Jul 01 2011
T(n,k) = Sum_{i=n-k..n} C(i,n-k)*C(n,i). - Mircea Merca, Apr 28 2012
E.g.f.: exp(2*y*x + x). - Geoffrey Critzer, Nov 12 2012
Riordan array (x/(1 - x), 2*x/(1 - x)). Exp(2*x) * e.g.f. for row n = e.g.f. for diagonal n. For example, for n = 3 we have exp(2*x)*(1 + 6*x + 12*x^2/2! + 8*x^3/3!) = 1 + 8*x + 40*x^2/2! + 160*x^3/3! + 560*x^4/4! + .... The same property holds more generally for Riordan arrays of the form (f(x), 2*x/(1 - x)). - Peter Bala, Dec 21 2014
T(n,k) = Sum_{j=0..k} (-1)^(k-j) * binomial(n,k) * binomial(k,j) * 3^j. - Kolosov Petro, Jan 28 2019
T(n,k) = 2*(n+1-k)*T(n,k-1)/k, T(n,0) = 1. - Alexander R. Povolotsky, Oct 08 2023
For n >= 1, GCD(T(n,1), ..., T(n,n)) = GCD(T(n,1),T(n,n)) = GCD(2*n,2^n) = A171977(n). - Pontus von Brömssen, Nov 01 2024

A003229 a(n) = a(n-1) + 2*a(n-3) with a(0)=a(1)=1, a(2)=3.

Original entry on oeis.org

1, 1, 3, 5, 7, 13, 23, 37, 63, 109, 183, 309, 527, 893, 1511, 2565, 4351, 7373, 12503, 21205, 35951, 60957, 103367, 175269, 297183, 503917, 854455, 1448821, 2456655, 4165565, 7063207, 11976517, 20307647, 34434061, 58387095, 99002389
Offset: 0

Views

Author

Keywords

Comments

Equals eigensequence of an infinite lower triangular matrix with 1's in the main diagonal, 0's in the subdiagonal and 2's in the subsubdiagonal (the triangle in the lower section of A155761). - Gary W. Adamson, Jan 28 2009
The operation in the comment of Jan 28 2009 is equivalent to the INVERT transform of (1, 0, 2, 0, 0, 0, ...). - Gary W. Adamson, Jan 21 2017
For n>=1, a(n) equals the number of ternary words of length n-1 having at least 2 zeros between every two successive nonzero letters. - Milan Janjic, Mar 09 2015

References

  • D. E. Daykin and S. J. Tucker, Introduction to Dragon Curves. Unpublished, 1976. See links below for an earlier version.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A077949, A077974. First differences of A003479. Partial sums of A052537. Equals |A077906(n)|+|A077906(n+1)|.

Programs

  • Haskell
    a003229 n = a003229_list !! n
    a003229_list = 1 : 1 : 3 : zipWith (+)
                               (map (* 2) a003229_list) (drop 2 a003229_list)
    -- Reinhard Zumkeller, Jan 01 2014
  • Magma
    I:=[1, 1, 3]; [n le 3 select I[n] else Self(n-1)+2*Self(n-3): n in [1..40]]; // Vincenzo Librandi, Jun 12 2012
    
  • Maple
    seq(add(binomial(n-2*k,k)*2^k,k=0..floor(n/3)),n=1..38); # Zerinvary Lajos, Apr 03 2007
    with(combstruct): SeqSeqSeqL := [T, {T=Sequence(S), S=Sequence(U, card >= 1), U=Sequence(Z, card >=3)}, unlabeled]: seq(count(SeqSeqSeqL, size=n+4), n=0..35); # Zerinvary Lajos, Apr 04 2009
    a := n -> `if`(n<3,[1,1,3][n+1], hypergeom([-n/3, -(1+n)/3, (1-n)/3], [-n/2, -(1+n)/2], -27/2)); seq(simplify(a(n)),n=0..35); # Peter Luschny, Mar 09 2015
  • Mathematica
    LinearRecurrence[{1,0, 2},{1,1,3},40] (* Vincenzo Librandi, Jun 12 2012 *)

Formula

G.f.: (1+2*z^2)/(1-z-2*z^3). - Simon Plouffe in his 1992 dissertation
a(n) = A077949(n+1) = |A077974(n+1)|.
a(n) = u(n+1) - 3*u(n) + 2*u(n-1) where u(i) = A003230(i) [Daykin and Tucker]. - N. J. A. Sloane, Jul 08 2014
a(n) = hypergeom([-n/3,-(1+n)/3,(1-n)/3],[-n/2,-(1+n)/2],-27/2) for n>=3. - Peter Luschny, Mar 09 2015

A128099 Triangle read by rows: T(n,k) is the number of ways to tile a 3 X n rectangle with k pieces of 2 X 2 tiles and 3n-4k pieces of 1 X 1 tiles (0 <= k <= floor(n/2)).

Original entry on oeis.org

1, 1, 1, 2, 1, 4, 1, 6, 4, 1, 8, 12, 1, 10, 24, 8, 1, 12, 40, 32, 1, 14, 60, 80, 16, 1, 16, 84, 160, 80, 1, 18, 112, 280, 240, 32, 1, 20, 144, 448, 560, 192, 1, 22, 180, 672, 1120, 672, 64, 1, 24, 220, 960, 2016, 1792, 448, 1, 26, 264, 1320, 3360, 4032, 1792, 128, 1, 28
Offset: 0

Views

Author

Emeric Deutsch, Feb 18 2007

Keywords

Comments

Row sums are the Jacobsthal numbers (A001045).
Apparently, T(n,k)/2^n equals the probability P that n will occur as a partial sum in a randomly-generated infinite sequence of 1s and 2s with n compositions (ordered partitions) into (n-2k) 1s and k 2s. Example: T(6,2)=24; P = 3/8 (24/2^6) that 6 will occur as a partial sum in the sequence with 2 (6-2*2) 1s and 2 2s. - Bob Selcoe, Jul 06 2013
From Johannes W. Meijer, Aug 28 2013: (Start)
The antidiagonal sums are A077949 and the backwards antidiagonal sums are A052947.
Moving the terms in each column of this triangle, see the example, upwards to row 0 gives the Pell-Jacobsthal triangle A013609 as a square array. (End)
The numbers in rows of the triangle are along "first layer" skew diagonals pointing top-right in center-justified triangle given in A013609 ((1+2*x)^n) and along (first layer) skew diagonals pointing top-left in center-justified triangle given in A038207 ((2+x)^n), see links. - Zagros Lalo, Jul 31 2018
If s(n) is the row sum at n, then the ratio s(n)/s(n-1) is approximately 2.000..., when n approaches infinity. - Zagros Lalo, Jul 31 2018
It appears that the rows of this array are the coefficients of the Jacobsthal polynomials (see MathWorld link). - Michel Marcus, Jun 15 2019

Examples

			Triangle starts:
  1;
  1;
  1,  2;
  1,  4;
  1,  6,  4;
  1,  8, 12;
  1, 10, 24,  8;
  1, 12, 40, 32;
		

References

  • Shara Lalo and Zagros Lalo, Polynomial Expansion Theorems and Number Triangles, Zana Publishing, 2018, ISBN: 978-1-9995914-0-3, pp. 80-83, 357-358

Crossrefs

Cf. (Triangle sums) A001045, A095977, A077949, A052947, A113726, A052942, A077909.
Cf. (Similar triangles) A008315, A011973, A102541.

Programs

  • Maple
    T := proc(n,k) if k<=n/2 then 2^k*binomial(n-k,k) else 0 fi end: for n from 0 to 16 do seq(T(n,k),k=0..floor(n/2)) od; # yields sequence in triangular form
    T := proc(n, k) option remember: if k<0 or k > floor(n/2) then return(0) fi: if k = 0 then return(1) fi: 2*procname(n-2, k-1) + procname(n-1, k): end: seq(seq(T(n, k), k=0..floor(n/2)), n=0..13); # Johannes W. Meijer, Aug 28 2013
  • Mathematica
    Table[2^k*Binomial[n - k, k] , {n,0,25}, {k,0,Floor[n/2]}] // Flatten  (* G. C. Greubel, Dec 28 2016 *)
    t[0, 0] = 1; t[n_, k_] := t[n, k] = If[n < 0 || k < 0, 0, t[n - 1, k] + 2 t[n - 2, k - 1]]; Table[t[n, k], {n, 0, 15}, {k, 0, Floor[n/2]}] // Flatten (* Zagros Lalo, Jul 31 2018 *)

Formula

T(n, k) = 2^k*binomial(n-k,k) = 2^k*A011973(n,k).
G.f.: 1/(1-z-2*t*z^2).
Sum_{k=0..floor(n/2)} k*T(n,k) = A095977(n-1).
From Johannes W. Meijer, Aug 28 2013: (Start)
T(n, k) = 2*T(n-2, k-1) + T(n-1, k) with T(n, 0) = 1 and T(n, k) = 0 for k < 0 and k > floor(n/2).
T(n, k) = A013609(n-k, k), n >= 0 and 0 <= k <= floor(n/2). (End)

A089977 Expansion of 1/((1-2*x)*(1+x+2*x^2)).

Original entry on oeis.org

1, 1, 1, 5, 9, 13, 33, 69, 121, 253, 529, 1013, 2025, 4141, 8193, 16293, 32857, 65629, 130801, 262229, 524745, 1047949, 2096865, 4195845, 8387641, 16775101, 33558481, 67109045, 134209449, 268443373, 536879553, 1073717349, 2147490841, 4295009053, 8589878449
Offset: 0

Views

Author

Paul Barry, Nov 18 2003

Keywords

Comments

Row sums of the Riordan array (1,x(1+4x^2)). - Paul Barry, Jan 12 2006
6*a(n-3) is the number of distinct nonbacktracking paths of length n on a unit cube which start on a given vertex and end on the same one (if n is even) or the opposite one (if n is odd). E.g., a(7)=69 because a(7)=a(6)+4*a(4)=33+4*9=69. a(3)=5 because there are 6*a(6-3)=6*5=30 nonbacktracking paths of length 6 on a unit cube that end on the same vertex (6 is even); if we name the vertices of a unit cube ABCDEFGH in the order of x+2y+4z, such paths starting from A are ABDCGEA, ABDHFBA, ABDHFEA, ABDHGCA, ABDHGDA; the remaining 25 can be derived from these 5 reflecting them about the ABGH plane and rotating the resulting 10 around the AH axis by 120 and -120 degrees. - Michal Kaczmarczyk, Apr 24 2006
The compositions of n in which each natural number is colored by one of p different colors are called p-colored compositions of n. For n>=3, 5*a(n-3) equals the number of 5-colored compositions of n with all parts >=3, such that no adjacent parts have the same color. - Milan Janjic, Nov 27 2011
a(n+2) equals the number of words of length n on alphabet {0,1,2,3,4}, having at least two zeros between every two successive nonzero letters. - Milan Janjic, Feb 07 2015
Number of compositions of n into one sort of part 1 and four sorts of part 3 (the g.f. is 1/(1-x-4*x^3) ). - Joerg Arndt, Feb 07 2015

Crossrefs

Programs

  • Maple
    seq(add(binomial(n-2*k,k)*4^k,k=0..floor(n/3)),n=0..32); # Zerinvary Lajos, Apr 03 2007
  • Mathematica
    Table[HypergeometricPFQ[{1/3-n/3,2/3-n/3,-n/3},{1/2-n/2,-n/2},-27],{n,0,32}] (* Peter Luschny, Feb 07 2015 *)
    CoefficientList[Series[1/((1 - 2*x)*(1 + x + 2*x^2)), {x,0,50}], x] (* G. C. Greubel, Apr 27 2017 *)
    LinearRecurrence[{1,0,4},{1,1,1},40] (* Harvey P. Dale, Sep 01 2021 *)
  • PARI
    Vec(1/((1-2*x)*(1+x+2*x^2)) + O(x^50)) \\ Michel Marcus, Feb 07 2015

Formula

a(n) = Sum_{k=0..floor(n/2)} C(n-2*k, k)*4^k.
a(n) = 2^(n-1)+2^(n/2)*(cos((n+2)*arctan(sqrt(7)/7)+Pi*n/2)/4+5*sqrt(7)*sin((n+2)*arctan(sqrt(7)/7)+Pi*n/2)/28).
a(n) = Sum_{k=0..n} C(k, floor((n-k)/2))2^(n-k)*(1+(-1)^(n-k))/2. - Paul Barry, Jan 12 2006
a(n) = a(n-1) + 4*a(n-3) for n>=3, a(0)=1, a(1)=1, a(2)=1. - Michal Kaczmarczyk, Apr 24 2006
a(n) = 2^(n-1) + A110512(n)/2. - R. J. Mathar, Aug 23 2011
G.f.: Q(0)/2, where Q(k) = 1 + 1/(1 - x*(4*k+1 + 4*x^2)/( x*(4*k+3 + 4*x^2) + 1/Q(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Sep 08 2013
a(n) = hypergeom([1/3-n/3,2/3-n/3,-n/3],[1/2-n/2,-n/2],-27). - Peter Luschny, Feb 07 2015

A143453 Square array A(n,k) of numbers of length n ternary words with at least k 0-digits between any other digits (n,k >= 0), read by antidiagonals.

Original entry on oeis.org

1, 1, 3, 1, 3, 9, 1, 3, 5, 27, 1, 3, 5, 11, 81, 1, 3, 5, 7, 21, 243, 1, 3, 5, 7, 13, 43, 729, 1, 3, 5, 7, 9, 23, 85, 2187, 1, 3, 5, 7, 9, 15, 37, 171, 6561, 1, 3, 5, 7, 9, 11, 25, 63, 341, 19683, 1, 3, 5, 7, 9, 11, 17, 39, 109, 683, 59049, 1, 3, 5, 7, 9, 11, 13, 27, 57, 183, 1365, 177147
Offset: 0

Views

Author

Alois P. Heinz, Aug 16 2008

Keywords

Examples

			A(3,1) = 11, because 11 ternary words of length 3 have at least 1 0-digit between any other digits: 000, 001, 002, 010, 020, 100, 101, 102, 200, 201, 202.
Square array A(n,k) begins:
     1,   1,  1,  1,  1,  1,  1,  1, ...
     3,   3,  3,  3,  3,  3,  3,  3, ...
     9,   5,  5,  5,  5,  5,  5,  5, ...
    27,  11,  7,  7,  7,  7,  7,  7, ...
    81,  21, 13,  9,  9,  9,  9,  9, ...
   243,  43, 23, 15, 11, 11, 11, 11, ...
   729,  85, 37, 25, 17, 13, 13, 13, ...
  2187, 171, 63, 39, 27, 19, 15, 15, ...
		

Crossrefs

Column k=0: A000244, k=1: A001045(n+2), k=2: A003229(n+1) and A077949(n+2), k=3: A052942(n+3), k=4: A143447, k=5: A143448, k=6: A143449, k=7: A143450, k=8: A143451, k=9: A143452.
Diagonal: A005408.

Programs

  • Maple
    A := proc (n::nonnegint, k::nonnegint) option remember; if k=0 then 3^n elif n<=k+1 then 2*n+1 else A(n-1, k) +2*A(n-k-1, k) fi end: seq(seq(A(n,d-n), n=0..d), d=0..14);
  • Mathematica
    a[n_, 0] := 3^n; a[n_, k_] /; n <= k+1 := 2*n+1; a[n_, k_] := a[n, k] = a[n-1, k] + 2*a[n-k-1, k]; Table[a[n-k, k], {n, 0, 14}, {k, n, 0, -1}] // Flatten (* Jean-François Alcover, Dec 11 2013 *)

Formula

G.f. of column k: 1/(x^k*(1-x-2*x^(k+1))).
A(n,k) = 3^n if k=0, else A(n,k) = 2*n+1 if n<=k+1, else A(n,k) = A(n-1,k) + 2*A(n-k-1,k).

A289265 Decimal expansion of the real root of x^3 - x^2 - 2 = 0.

Original entry on oeis.org

1, 6, 9, 5, 6, 2, 0, 7, 6, 9, 5, 5, 9, 8, 6, 2, 0, 5, 7, 4, 1, 6, 3, 6, 7, 1, 0, 0, 1, 1, 7, 5, 3, 5, 3, 4, 2, 6, 1, 8, 1, 7, 9, 3, 8, 8, 2, 0, 8, 5, 0, 7, 7, 3, 0, 2, 2, 1, 8, 7, 0, 7, 2, 8, 4, 4, 5, 2, 4, 4, 5, 3, 4, 5, 4, 0, 8, 0, 0, 7, 2, 2, 1, 3, 9, 9
Offset: 1

Views

Author

Clark Kimberling, Jul 14 2017

Keywords

Examples

			1.6956207695598620574163671001175353426181793882085077...
		

References

  • D. E. Daykin and S. J. Tucker, Introduction to Dragon Curves, unpublished, 1976, end of section 2. See links in A003229.

Crossrefs

Cf. A078140 (includes guide to constants similar to A289260).

Programs

  • Mathematica
    z = 2000; r = 8/5;
    u = CoefficientList[Series[1/Sum[Floor[(k + 1)*r] (-x)^k, {k, 0, z}], {x, 0, z}], x];  (* A289260 *)
    v = N[u[[z]]/u[[z - 1]], 200]
    RealDigits[v, 10][[1]] (* A289265 *)
  • PARI
    solve(x=1, 2, x^3 - x^2 - 2) \\ Michel Marcus, Oct 26 2019

Formula

r = D^(1/3) + (1/9)*D^(-1/3) + 1/3 where D = 28/27 + (1/9)*sqrt(29*3) [Chang and Zhang] from the usual cubic solution formula. Or similarly r = (1/3)*(1 + C + 1/C) where C = (28 + sqrt(29*27))^(1/3). - Kevin Ryde, Oct 25 2019

A003230 Expansion of 1/((1-x)*(1-2*x)*(1-x-2*x^3)).

Original entry on oeis.org

1, 4, 11, 28, 67, 152, 335, 724, 1539, 3232, 6727, 13900, 28555, 58392, 118959, 241604, 489459, 989520, 1997015, 4024508, 8100699, 16289032, 32726655, 65705268, 131837763, 264399936, 530028199, 1062139180, 2127809963
Offset: 0

Views

Author

Keywords

Comments

The number of simple squares in the (n+4)-th iteration of the Harter-Heighway dragon (see Wikipedia reference below). - Roland Kneer, Jul 01 2013
The number of double points of the (n+4)-th iteration of the Harter-Heighway dragon. - Manfred Lindemann, Nov 11 2015

References

  • D. E. Daykin and S. J. Tucker, Introduction to Dragon Curves. Unpublished, 1976. See links in A003229 for an earlier version.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Maple
    A003230:=-1/(z-1)/(2*z-1)/(-1+z+2*z**3); # Simon Plouffe in his 1992 dissertation
    S:=series(1/((1-x)*(1-2*x)*(1-x-2*x^3)),x,101): a:=n->coeff(S,x,n):
    seq(a(n),n=0..100); # Manfred Lindemann, Nov 13 2015
  • Mathematica
    CoefficientList[Series[1/((1-x)*(1-2x)*(1-x-2x^3)),{x,0,40}],x] (* Vincenzo Librandi, Jun 11 2012 *)
  • PARI
    Vec(1/((1-x)*(1-2*x)*(1-x-2*x^3))+O(x^66)) \\ Joerg Arndt, Jun 29 2013

Formula

a(n+3) = a(n+2) + 2*a(n) + 2^(n+4) - 1, with a(-3)=a(-2)=a(-1)=0. - Manfred Lindemann, Nov 11 2015
a(n+2) - a(n+1) = A003477(n+2) + A003477(n). - Manfred Lindemann, Dec 08 2015
a(n) = q(n) + q(n-1) + 2*Sum_{i=0..n-2}(q(i)), where q(i)=A003477 and q(-1)=0. - Manfred Lindemann, Dec 08 2015
From Manfred Lindemann, Nov 11 2015: (Start)
With thrt:=(54+6*sqrt(87))^(1/3), ROR:=(thrt/6-1/thrt) and RORext:=(thrt/6+1/thrt) becomes ROC:=(1/2)*(i*sqrt(3)*RORext-ROR), where i^2=-1.
Now ROR, ROC and conjugate(ROC) are the zeros of 1-x-2*x^3.
With AR:=(2*ROR^2+ROR+2)/(2*ROR-3), AC:=(2*ROC^2+ROC+2)/(2*ROC-3) and the zeros of (1-2*x) and (1-x)
a(n) = (1/2)*(AR*ROR^-(n+4)+AC*ROC^-(n+4)+conjugate(AC*ROC^-(n+4))+1*(1/2)^-(n+4)+1*1^-(n+4)).
Simplified: a(n) = (1/2)*(AR*ROR^-(n+4)+2*Re(AC*ROC^-(n+4))+2^(n+4)+1).
(End)

Extensions

More terms from James Sellers, Aug 21 2000
Maple program corrected by Robert Israel, Nov 11 2015

A003479 Expansion of 1/((1-x)*(1-x-2*x^3)).

Original entry on oeis.org

1, 2, 3, 6, 11, 18, 31, 54, 91, 154, 263, 446, 755, 1282, 2175, 3686, 6251, 10602, 17975, 30478, 51683, 87634, 148591, 251958, 427227, 724410, 1228327, 2082782, 3531603, 5988258, 10153823, 17217030, 29193547, 49501194, 83935255, 142322350
Offset: 0

Views

Author

Keywords

References

  • D. E. Daykin and S. J. Tucker, Introduction to Dragon Curves. Unpublished, 1976. See links in A003229 for an earlier version.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A003229.

Programs

Formula

A003476(n+1) + A077949(n)/2 - 1/2. - Ralf Stephan, Sep 25 2004
a(n+1) - a(n) = A077949(n+1). - R. J. Mathar, Mar 22 2011

Extensions

More terms from Antonio G. Astudillo (afg_astudillo(AT)lycos.com), Mar 29 2003

A077974 Expansion of 1/(1+x+2*x^3).

Original entry on oeis.org

1, -1, 1, -3, 5, -7, 13, -23, 37, -63, 109, -183, 309, -527, 893, -1511, 2565, -4351, 7373, -12503, 21205, -35951, 60957, -103367, 175269, -297183, 503917, -854455, 1448821, -2456655, 4165565, -7063207, 11976517, -20307647, 34434061, -58387095, 99002389, -167870511, 284644701
Offset: 0

Views

Author

N. J. A. Sloane, Nov 17 2002

Keywords

Crossrefs

Signed version of A077949.

Programs

  • GAP
    a:=[1,-1,1];; for n in [4..45] do a[n]:=-a[n-1]-2*a[n-3]; od; a; # G. C. Greubel, Jun 25 2019
  • Magma
    R:=PowerSeriesRing(Integers(), 45); Coefficients(R!( 1/(1+x+2*x^3) )); // G. C. Greubel, Jun 25 2019
    
  • Mathematica
    CoefficientList[Series[1/(1+x+2*x^3),{x,0,45}],x] (* or *) LinearRecurrence[ {-1,0,-2},{1,-1,1},45] (* Harvey P. Dale, Aug 29 2012 *)
  • PARI
    Vec(1/(1+x+2*x^3)+O(x^45)) \\ Charles R Greathouse IV, Sep 26 2012
    
  • Sage
    (1/(1+x+2*x^3)).series(x, 45).coefficients(x, sparse=False) # G. C. Greubel, Jun 25 2019
    

Formula

a(0)=1, a(1)=-1, a(2)=1, a(n)=a(n-1)-2*a(n-3). - Harvey P. Dale, Aug 29 2012

A003477 Expansion of 1/((1-2x)(1+x^2)(1-x-2x^3)).

Original entry on oeis.org

1, 3, 6, 14, 33, 71, 150, 318, 665, 1375, 2830, 5798, 11825, 24039, 48742, 98606, 199113, 401455, 808382, 1626038, 3267809, 6562295, 13169814, 26416318, 52962681, 106145855, 212665582, 425965126, 853005201, 1707833095, 3418756806
Offset: 0

Views

Author

Keywords

Comments

The number of simple squares in the biggest 'cloud' of the Harter-Heighway dragon of degree (n+4). Equals the number of double points in the biggest 'cloud' of the very same. - Manfred Lindemann, Dec 06 2015

References

  • D. E. Daykin and S. J. Tucker, Introduction to Dragon Curves. Unpublished, 1976. See links in A003229 for an earlier version.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A003230, A077949. - Manfred Lindemann, Dec 06 2015
Cf. A077854.

Programs

  • Maple
    A003477:=1/(2*z-1)/(-1+z+2*z**3)/(1+z**2); # Simon Plouffe in his 1992 dissertation
    S:=series(1/((1-x-2*x^3)*(1-2*x)*(1+x^2)), x, 101): a:=n->coeff(S, x, n):
    seq(a(n), n=0..100); # Manfred Lindemann, Dec 06 2015
    a:= gfun:-rectoproc({a(n) = 3*a(n-1)-3*a(n-2)+5*a(n-3)-6*a(n-4)+2*a(n-5)-4*a(n-6),seq(a(i)=[1,3,6,14,33,71][i+1],i=0..5)},a(n),remember):
    seq(a(n),n=0..100); # Robert Israel, Dec 14 2015
  • Mathematica
    CoefficientList[Series[1/((1-2x)(1+x^2)(1-x-2x^3)),{x,0,40}],x] (* Vincenzo Librandi, Jun 11 2012 *)
    LinearRecurrence[{3, -3, 5, -6, 2, -4}, {1, 3, 6, 14, 33, 71}, 31] (* Arie Bos, Dec 03 2019 *)
  • PARI
    Vec(1/((1-2*x)*(1+x^2)*(1-x-2*x^3))+O(x^99)) \\ Charles R Greathouse IV, Sep 26 2012

Formula

a(0) = 1; for n > 0, a(n) = 3*a(n-1) - 3*a(n-2) + 5*a(n-3) - 6*a(n-4) + 2*a(n-5) - 4*a(n-6) (where a(n)=0 for -5 <= n <= -1). - Jon E. Schoenfield, Apr 23 2010
From Manfred Lindemann, Dec 06 2015: (Start)
a(n) = 3*a(n-1) - 2*a(n-2) + 2*a(n-3) - 4*a(n-4) + Re(i^(n-4)), a(-5)=a(-4)=a(-3)=a(-2)=0 for all integers n element Z.
a(n+2)+a(n) = A003230(n+2)-A003230(n+1). [Daykin and Tucker equation (5)]
With thrt:=(54+6*sqrt(87))^(1/3), ROR:=(thrt/6-1/thrt) and RORext:=(thrt/6+1/thrt) becomes ROC:=(1/2)*(i*sqrt(3)*RORext-ROR), where i^2=-1.
Now ROR, ROC and conjugate(ROC) are the zeros of 1-x-2*x^3.
With BR:=1/(2*ROR-3), BC:=1/(2*ROC-3) and the zeros of (1-2*x) and (1+x^2) becomes
a(n) = (1/2)*(BR*ROR^-(n+4) + BC*ROC^-(n+4) + conjugate(BC*ROC^-(n+4)) + (2/5)*(1/2)^-(n+4) + (3/10 + i*(1/10))*i^-(n+4) + conjugate((3/10 + i*(1/10))*i^-(n+4))).
Simplified: a(n) = (BR/2)*ROR^-(n+4) + Re(BC*ROC^-(n+4)) + (1/5)*(1/2)^-(n+4) + Re((3/10 + i*(1/10))*i^-(n+4)).
(End)
Conjecture: a(n) = A077854(n) + 2*(a(n-3) + a(n-4) + ... + a(1)). - Arie Bos, Nov 29 2019

Extensions

More terms from Jon E. Schoenfield, Apr 23 2010
Showing 1-10 of 14 results. Next