A013609
Triangle of coefficients in expansion of (1+2*x)^n.
Original entry on oeis.org
1, 1, 2, 1, 4, 4, 1, 6, 12, 8, 1, 8, 24, 32, 16, 1, 10, 40, 80, 80, 32, 1, 12, 60, 160, 240, 192, 64, 1, 14, 84, 280, 560, 672, 448, 128, 1, 16, 112, 448, 1120, 1792, 1792, 1024, 256, 1, 18, 144, 672, 2016, 4032, 5376, 4608, 2304, 512, 1, 20, 180, 960, 3360, 8064, 13440, 15360, 11520, 5120, 1024
Offset: 0
Triangle begins:
1;
1, 2;
1, 4, 4;
1, 6, 12, 8;
1, 8, 24, 32, 16;
1, 10, 40, 80, 80, 32;
1, 12, 60, 160, 240, 192, 64;
1, 14, 84, 280, 560, 672, 448, 128;
1, 16, 112, 448, 1120, 1792, 1792, 1024, 256;
1, 18, 144, 672, 2016, 4032, 5376, 4608, 2304, 512;
1, 20, 180, 960, 3360, 8064, 13440, 15360, 11520, 5120, 1024;
1, 22, 220, 1320, 5280, 14784, 29568, 42240, 42240, 28160, 11264, 2048;
1, 24, 264, 1760, 7920, 25344, 59136, 101376, 126720, 112640, 67584, 24576, 4096;
From _Peter Bala_, Apr 20 2012: (Start)
The triangle can be written as the matrix product A038207*(signed version of A013609).
|.1................||.1..................|
|.2...1............||-1...2..............|
|.4...4...1........||.1..-4...4..........|
|.8..12...6...1....||-1...6...-12...8....|
|16..32..24...8...1||.1..-8....24.-32..16|
|..................||....................|
(End)
- B. N. Cyvin et al., Isomer enumeration of unbranched catacondensed polygonal systems with pentagons and heptagons, Match, No. 34 (Oct 1996), pp. 109-121.
- G. Hotz, Zur Reduktion von Schaltkreispolynomen im Hinblick auf eine Verwendung in Rechenautomaten, El. Datenverarbeitung, Folge 5 (1960), pp. 21-27.
- T. D. Noe, Rows n=0..50 of triangle, flattened
- Feryal Alayont and Evan Henning, Edge Covers of Caterpillars, Cycles with Pendants, and Spider Graphs, J. Int. Seq. (2023) Vol. 26, Art. 23.9.4.
- H. J. Brothers, Pascal's Prism: Supplementary Material, PDF version.
- John Cartan, Cartan's triangle shows the relationship to the n-cube.
- R. Ehrenborg and M. Readdy, Characterization of the factorial functions of Eulerian binomial and Sheffer posets
- J. Goldman and J. Haglund, Generalized rook polynomials, J. Combin. Theory A91 (2000), 509-530, 1-rook coefficients of k rooks on the 2xn board, all heights 2.
- W. G. Harter, Representations of multidimensional symmetries in networks, J. Math. Phys., 15 (1974), 2016-2021.
- Brian Hopkins and Stéphane Ouvry, Combinatorics of Multicompositions, arXiv:2008.04937 [math.CO], 2020.
- D. A. Zaitsev, A generalized neighborhood for cellular automata, Theoretical Computer Science, 666 (2017), 21-35.
-
a013609 n = a013609_list !! n
a013609_list = concat $ iterate ([1,2] *) [1]
instance Num a => Num [a] where
fromInteger k = [fromInteger k]
(p:ps) + (q:qs) = p + q : ps + qs
ps + qs = ps ++ qs
(p:ps) * qs'@(q:qs) = p * q : ps * qs' + [p] * qs
* = []
-- Reinhard Zumkeller, Apr 02 2011
-
a013609 n k = a013609_tabl !! n !! k
a013609_row n = a013609_tabl !! n
a013609_tabl = iterate (\row -> zipWith (+) ([0] ++ row) $
zipWith (+) ([0] ++ row) (row ++ [0])) [1]
-- Reinhard Zumkeller, Jul 22 2013, Feb 27 2013
-
[2^k*Binomial(n,k): k in [0..n], n in [0..15]]; // G. C. Greubel, Sep 17 2021
-
bin2:=proc(n,k) option remember; if k<0 or k>n then 0 elif k=0 then 1 else 2*bin2(n-1,k-1)+bin2(n-1,k); fi; end; # N. J. A. Sloane, Jun 01 2009
-
Flatten[Table[CoefficientList[(1 + 2*x)^n, x], {n, 0, 10}]][[1 ;; 59]] (* Jean-François Alcover, May 17 2011 *)
BinomialROW[n_, k_, t_] := Sum[Binomial[n, k]*Binomial[k, j]*(-1)^(k - j)*t^j, {j, 0, k}]; Column[Table[BinomialROW[n, k, 3], {n, 0, 10}, {k, 0, n}], Center] (* Kolosov Petro, Jan 28 2019 *)
-
a(n,k):=coeff(expand((1+2*x)^n),x^k);
create_list(a(n,k),n,0,6,k,0,n); /* Emanuele Munarini, Nov 21 2012 */
-
/* same as in A092566 but use */
steps=[[1,0], [1,1], [1,1]]; /* note double [1,1] */
/* Joerg Arndt, Jul 01 2011 */
-
flatten([[2^k*binomial(n,k) for k in (0..n)] for n in (0..15)]) # G. C. Greubel, Sep 17 2021
A003229
a(n) = a(n-1) + 2*a(n-3) with a(0)=a(1)=1, a(2)=3.
Original entry on oeis.org
1, 1, 3, 5, 7, 13, 23, 37, 63, 109, 183, 309, 527, 893, 1511, 2565, 4351, 7373, 12503, 21205, 35951, 60957, 103367, 175269, 297183, 503917, 854455, 1448821, 2456655, 4165565, 7063207, 11976517, 20307647, 34434061, 58387095, 99002389
Offset: 0
- D. E. Daykin and S. J. Tucker, Introduction to Dragon Curves. Unpublished, 1976. See links below for an earlier version.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- D. Birmajer, J. B. Gil, and M. D. Weiner, On the Enumeration of Restricted Words over a Finite Alphabet, J. Int. Seq. 19 (2016) # 16.1.3, Example 9.
- D. E. Daykin, Letter to N. J. A. Sloane, Dec 1973.
- D. E. Daykin, Letter to N. J. A. Sloane, Mar 1974.
- D. E. Daykin and S. J. Tucker, Sequences from Folding Paper, Unpublished manuscript, 1975, cached copy, page 1.
- D. E. Daykin and S. J. Tucker, Sequences from Folding Paper, Unpublished manuscript, 1975, cached copy, page 2.
- D. E. Daykin and S. J. Tucker, Sequences from Folding Paper, Unpublished manuscript, 1975, cached copy, page 3.
- D. E. Daykin and S. J. Tucker, Sequences from Folding Paper, Unpublished manuscript, 1975, cached copy, page 4.
- D. E. Daykin and S. J. Tucker, Sequences from Folding Paper, Unpublished manuscript, 1975, cached copy, reverse side of page 4.
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 417.
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992.
- Index entries for linear recurrences with constant coefficients, signature (1,0,2).
-
a003229 n = a003229_list !! n
a003229_list = 1 : 1 : 3 : zipWith (+)
(map (* 2) a003229_list) (drop 2 a003229_list)
-- Reinhard Zumkeller, Jan 01 2014
-
I:=[1, 1, 3]; [n le 3 select I[n] else Self(n-1)+2*Self(n-3): n in [1..40]]; // Vincenzo Librandi, Jun 12 2012
-
seq(add(binomial(n-2*k,k)*2^k,k=0..floor(n/3)),n=1..38); # Zerinvary Lajos, Apr 03 2007
with(combstruct): SeqSeqSeqL := [T, {T=Sequence(S), S=Sequence(U, card >= 1), U=Sequence(Z, card >=3)}, unlabeled]: seq(count(SeqSeqSeqL, size=n+4), n=0..35); # Zerinvary Lajos, Apr 04 2009
a := n -> `if`(n<3,[1,1,3][n+1], hypergeom([-n/3, -(1+n)/3, (1-n)/3], [-n/2, -(1+n)/2], -27/2)); seq(simplify(a(n)),n=0..35); # Peter Luschny, Mar 09 2015
-
LinearRecurrence[{1,0, 2},{1,1,3},40] (* Vincenzo Librandi, Jun 12 2012 *)
A128099
Triangle read by rows: T(n,k) is the number of ways to tile a 3 X n rectangle with k pieces of 2 X 2 tiles and 3n-4k pieces of 1 X 1 tiles (0 <= k <= floor(n/2)).
Original entry on oeis.org
1, 1, 1, 2, 1, 4, 1, 6, 4, 1, 8, 12, 1, 10, 24, 8, 1, 12, 40, 32, 1, 14, 60, 80, 16, 1, 16, 84, 160, 80, 1, 18, 112, 280, 240, 32, 1, 20, 144, 448, 560, 192, 1, 22, 180, 672, 1120, 672, 64, 1, 24, 220, 960, 2016, 1792, 448, 1, 26, 264, 1320, 3360, 4032, 1792, 128, 1, 28
Offset: 0
Triangle starts:
1;
1;
1, 2;
1, 4;
1, 6, 4;
1, 8, 12;
1, 10, 24, 8;
1, 12, 40, 32;
- Shara Lalo and Zagros Lalo, Polynomial Expansion Theorems and Number Triangles, Zana Publishing, 2018, ISBN: 978-1-9995914-0-3, pp. 80-83, 357-358
- G. C. Greubel, Table of n, a(n) for the first 100 rows, flattened
- Isabel Cação, Helmuth R. Malonek, Maria Irene Falcão, and Graça Tomaz, Intrinsic Properties of a Non-Symmetric Number Triangle, J. Int. Seq., Vol. 26 (2023), Article 23.4.8.
- Richard Fors, Independence Complexes of Certain Families of Graphs, Master's thesis in Mathematics at KTH, presented Aug 19 2011.
- R. J. Mathar, Tiling n x m rectangles with 1 x 1 and s x s squares arXiv:1609.03964 [math.CO] (2016).
- Zagros Lalo, First layer skew diagonals in center-justified triangle of coefficients in expansion of (1 + 2x)^n
- Zagros Lalo, First layer skew diagonals in center-justified triangle of coefficients in expansion of (2 + x)^n
- Eric Weisstein's World of Mathematics, Jacobsthal Polynomial
-
T := proc(n,k) if k<=n/2 then 2^k*binomial(n-k,k) else 0 fi end: for n from 0 to 16 do seq(T(n,k),k=0..floor(n/2)) od; # yields sequence in triangular form
T := proc(n, k) option remember: if k<0 or k > floor(n/2) then return(0) fi: if k = 0 then return(1) fi: 2*procname(n-2, k-1) + procname(n-1, k): end: seq(seq(T(n, k), k=0..floor(n/2)), n=0..13); # Johannes W. Meijer, Aug 28 2013
-
Table[2^k*Binomial[n - k, k] , {n,0,25}, {k,0,Floor[n/2]}] // Flatten (* G. C. Greubel, Dec 28 2016 *)
t[0, 0] = 1; t[n_, k_] := t[n, k] = If[n < 0 || k < 0, 0, t[n - 1, k] + 2 t[n - 2, k - 1]]; Table[t[n, k], {n, 0, 15}, {k, 0, Floor[n/2]}] // Flatten (* Zagros Lalo, Jul 31 2018 *)
A089977
Expansion of 1/((1-2*x)*(1+x+2*x^2)).
Original entry on oeis.org
1, 1, 1, 5, 9, 13, 33, 69, 121, 253, 529, 1013, 2025, 4141, 8193, 16293, 32857, 65629, 130801, 262229, 524745, 1047949, 2096865, 4195845, 8387641, 16775101, 33558481, 67109045, 134209449, 268443373, 536879553, 1073717349, 2147490841, 4295009053, 8589878449
Offset: 0
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- D. Birmajer, J. B. Gil, and M. D. Weiner, On the Enumeration of Restricted Words over a Finite Alphabet, J. Int. Seq. 19 (2016) # 16.1.3, Example 9.
- Index entries for linear recurrences with constant coefficients, signature (1,0,4).
-
seq(add(binomial(n-2*k,k)*4^k,k=0..floor(n/3)),n=0..32); # Zerinvary Lajos, Apr 03 2007
-
Table[HypergeometricPFQ[{1/3-n/3,2/3-n/3,-n/3},{1/2-n/2,-n/2},-27],{n,0,32}] (* Peter Luschny, Feb 07 2015 *)
CoefficientList[Series[1/((1 - 2*x)*(1 + x + 2*x^2)), {x,0,50}], x] (* G. C. Greubel, Apr 27 2017 *)
LinearRecurrence[{1,0,4},{1,1,1},40] (* Harvey P. Dale, Sep 01 2021 *)
-
Vec(1/((1-2*x)*(1+x+2*x^2)) + O(x^50)) \\ Michel Marcus, Feb 07 2015
A143453
Square array A(n,k) of numbers of length n ternary words with at least k 0-digits between any other digits (n,k >= 0), read by antidiagonals.
Original entry on oeis.org
1, 1, 3, 1, 3, 9, 1, 3, 5, 27, 1, 3, 5, 11, 81, 1, 3, 5, 7, 21, 243, 1, 3, 5, 7, 13, 43, 729, 1, 3, 5, 7, 9, 23, 85, 2187, 1, 3, 5, 7, 9, 15, 37, 171, 6561, 1, 3, 5, 7, 9, 11, 25, 63, 341, 19683, 1, 3, 5, 7, 9, 11, 17, 39, 109, 683, 59049, 1, 3, 5, 7, 9, 11, 13, 27, 57, 183, 1365, 177147
Offset: 0
A(3,1) = 11, because 11 ternary words of length 3 have at least 1 0-digit between any other digits: 000, 001, 002, 010, 020, 100, 101, 102, 200, 201, 202.
Square array A(n,k) begins:
1, 1, 1, 1, 1, 1, 1, 1, ...
3, 3, 3, 3, 3, 3, 3, 3, ...
9, 5, 5, 5, 5, 5, 5, 5, ...
27, 11, 7, 7, 7, 7, 7, 7, ...
81, 21, 13, 9, 9, 9, 9, 9, ...
243, 43, 23, 15, 11, 11, 11, 11, ...
729, 85, 37, 25, 17, 13, 13, 13, ...
2187, 171, 63, 39, 27, 19, 15, 15, ...
-
A := proc (n::nonnegint, k::nonnegint) option remember; if k=0 then 3^n elif n<=k+1 then 2*n+1 else A(n-1, k) +2*A(n-k-1, k) fi end: seq(seq(A(n,d-n), n=0..d), d=0..14);
-
a[n_, 0] := 3^n; a[n_, k_] /; n <= k+1 := 2*n+1; a[n_, k_] := a[n, k] = a[n-1, k] + 2*a[n-k-1, k]; Table[a[n-k, k], {n, 0, 14}, {k, n, 0, -1}] // Flatten (* Jean-François Alcover, Dec 11 2013 *)
A289265
Decimal expansion of the real root of x^3 - x^2 - 2 = 0.
Original entry on oeis.org
1, 6, 9, 5, 6, 2, 0, 7, 6, 9, 5, 5, 9, 8, 6, 2, 0, 5, 7, 4, 1, 6, 3, 6, 7, 1, 0, 0, 1, 1, 7, 5, 3, 5, 3, 4, 2, 6, 1, 8, 1, 7, 9, 3, 8, 8, 2, 0, 8, 5, 0, 7, 7, 3, 0, 2, 2, 1, 8, 7, 0, 7, 2, 8, 4, 4, 5, 2, 4, 4, 5, 3, 4, 5, 4, 0, 8, 0, 0, 7, 2, 2, 1, 3, 9, 9
Offset: 1
1.6956207695598620574163671001175353426181793882085077...
- D. E. Daykin and S. J. Tucker, Introduction to Dragon Curves, unpublished, 1976, end of section 2. See links in A003229.
Sequences growing as this power:
A003229,
A003476,
A003479,
A052537,
A077949,
A144181,
A164395,
A164399,
A164410,
A164414,
A164471,
A203175,
A227036,
A289260,
A292764.
-
z = 2000; r = 8/5;
u = CoefficientList[Series[1/Sum[Floor[(k + 1)*r] (-x)^k, {k, 0, z}], {x, 0, z}], x]; (* A289260 *)
v = N[u[[z]]/u[[z - 1]], 200]
RealDigits[v, 10][[1]] (* A289265 *)
-
solve(x=1, 2, x^3 - x^2 - 2) \\ Michel Marcus, Oct 26 2019
A003230
Expansion of 1/((1-x)*(1-2*x)*(1-x-2*x^3)).
Original entry on oeis.org
1, 4, 11, 28, 67, 152, 335, 724, 1539, 3232, 6727, 13900, 28555, 58392, 118959, 241604, 489459, 989520, 1997015, 4024508, 8100699, 16289032, 32726655, 65705268, 131837763, 264399936, 530028199, 1062139180, 2127809963
Offset: 0
- D. E. Daykin and S. J. Tucker, Introduction to Dragon Curves. Unpublished, 1976. See links in A003229 for an earlier version.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- D. E. Daykin, Letter to N. J. A. Sloane, Dec 1973
- D. E. Daykin, Letter to N. J. A. Sloane, Mar 1974
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
- Wikipedia, Dragon curve: Harter-Heighway dragon
- Index entries for linear recurrences with constant coefficients, signature (4,-5,4,-6,4).
-
A003230:=-1/(z-1)/(2*z-1)/(-1+z+2*z**3); # Simon Plouffe in his 1992 dissertation
S:=series(1/((1-x)*(1-2*x)*(1-x-2*x^3)),x,101): a:=n->coeff(S,x,n):
seq(a(n),n=0..100); # Manfred Lindemann, Nov 13 2015
-
CoefficientList[Series[1/((1-x)*(1-2x)*(1-x-2x^3)),{x,0,40}],x] (* Vincenzo Librandi, Jun 11 2012 *)
-
Vec(1/((1-x)*(1-2*x)*(1-x-2*x^3))+O(x^66)) \\ Joerg Arndt, Jun 29 2013
A003479
Expansion of 1/((1-x)*(1-x-2*x^3)).
Original entry on oeis.org
1, 2, 3, 6, 11, 18, 31, 54, 91, 154, 263, 446, 755, 1282, 2175, 3686, 6251, 10602, 17975, 30478, 51683, 87634, 148591, 251958, 427227, 724410, 1228327, 2082782, 3531603, 5988258, 10153823, 17217030, 29193547, 49501194, 83935255, 142322350
Offset: 0
- D. E. Daykin and S. J. Tucker, Introduction to Dragon Curves. Unpublished, 1976. See links in A003229 for an earlier version.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- D. E. Daykin, Letter to N. J. A. Sloane, Mar 1974.
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992.
- Index entries for linear recurrences with constant coefficients, signature (2,-1,2,-2).
-
A003479:=1/(z-1)/(-1+z+2*z**3); # Simon Plouffe in his 1992 dissertation
-
CoefficientList[Series[1/((1-x)*(1-x-2*x^3)),{x,0,40}],x] (* Vincenzo Librandi, Jun 12 2012 *)
-
a(n)=([0,1,0,0; 0,0,1,0; 0,0,0,1; -2,2,-1,2]^n*[1;2;3;6])[1,1] \\ Charles R Greathouse IV, Jun 23 2020
More terms from Antonio G. Astudillo (afg_astudillo(AT)lycos.com), Mar 29 2003
A077974
Expansion of 1/(1+x+2*x^3).
Original entry on oeis.org
1, -1, 1, -3, 5, -7, 13, -23, 37, -63, 109, -183, 309, -527, 893, -1511, 2565, -4351, 7373, -12503, 21205, -35951, 60957, -103367, 175269, -297183, 503917, -854455, 1448821, -2456655, 4165565, -7063207, 11976517, -20307647, 34434061, -58387095, 99002389, -167870511, 284644701
Offset: 0
-
a:=[1,-1,1];; for n in [4..45] do a[n]:=-a[n-1]-2*a[n-3]; od; a; # G. C. Greubel, Jun 25 2019
-
R:=PowerSeriesRing(Integers(), 45); Coefficients(R!( 1/(1+x+2*x^3) )); // G. C. Greubel, Jun 25 2019
-
CoefficientList[Series[1/(1+x+2*x^3),{x,0,45}],x] (* or *) LinearRecurrence[ {-1,0,-2},{1,-1,1},45] (* Harvey P. Dale, Aug 29 2012 *)
-
Vec(1/(1+x+2*x^3)+O(x^45)) \\ Charles R Greathouse IV, Sep 26 2012
-
(1/(1+x+2*x^3)).series(x, 45).coefficients(x, sparse=False) # G. C. Greubel, Jun 25 2019
A003477
Expansion of 1/((1-2x)(1+x^2)(1-x-2x^3)).
Original entry on oeis.org
1, 3, 6, 14, 33, 71, 150, 318, 665, 1375, 2830, 5798, 11825, 24039, 48742, 98606, 199113, 401455, 808382, 1626038, 3267809, 6562295, 13169814, 26416318, 52962681, 106145855, 212665582, 425965126, 853005201, 1707833095, 3418756806
Offset: 0
- D. E. Daykin and S. J. Tucker, Introduction to Dragon Curves. Unpublished, 1976. See links in A003229 for an earlier version.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- D. E. Daykin, Letter to N. J. A. Sloane, Mar 1974
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
- Kevin Ryde, Iterations of the Dragon Curve, see index "BlobA".
- Index entries for linear recurrences with constant coefficients, signature (3,-3,5,-6,2,-4).
-
A003477:=1/(2*z-1)/(-1+z+2*z**3)/(1+z**2); # Simon Plouffe in his 1992 dissertation
S:=series(1/((1-x-2*x^3)*(1-2*x)*(1+x^2)), x, 101): a:=n->coeff(S, x, n):
seq(a(n), n=0..100); # Manfred Lindemann, Dec 06 2015
a:= gfun:-rectoproc({a(n) = 3*a(n-1)-3*a(n-2)+5*a(n-3)-6*a(n-4)+2*a(n-5)-4*a(n-6),seq(a(i)=[1,3,6,14,33,71][i+1],i=0..5)},a(n),remember):
seq(a(n),n=0..100); # Robert Israel, Dec 14 2015
-
CoefficientList[Series[1/((1-2x)(1+x^2)(1-x-2x^3)),{x,0,40}],x] (* Vincenzo Librandi, Jun 11 2012 *)
LinearRecurrence[{3, -3, 5, -6, 2, -4}, {1, 3, 6, 14, 33, 71}, 31] (* Arie Bos, Dec 03 2019 *)
-
Vec(1/((1-2*x)*(1+x^2)*(1-x-2*x^3))+O(x^99)) \\ Charles R Greathouse IV, Sep 26 2012
Showing 1-10 of 14 results.
Comments