A015445
Generalized Fibonacci numbers: a(n) = a(n-1) + 9*a(n-2).
Original entry on oeis.org
1, 1, 10, 19, 109, 280, 1261, 3781, 15130, 49159, 185329, 627760, 2295721, 7945561, 28607050, 100117099, 357580549, 1258634440, 4476859381, 15804569341, 56096303770, 198337427839, 703204161769, 2488241012320, 8817078468241, 31211247579121, 110564953793290
Offset: 0
-
[ n eq 1 select 1 else n eq 2 select 1 else Self(n-1)+9*Self(n-2): n in [1..30] ]; // Vincenzo Librandi, Aug 23 2011
-
m:=25; S:=series(1/(1-x-9*x^2), x, m+1): seq(coeff(S, x, j), j=0..m); # G. C. Greubel, Feb 18 2020
-
CoefficientList[Series[1/(1-x-9*x^2), {x,0,25}], x] (* or *) LinearRecurrence[{1,9}, {1,1}, 25] (* G. C. Greubel, Apr 30 2017 *)
-
a(n)=([0,1; 9,1]^n*[1;1])[1,1] \\ Charles R Greathouse IV, Oct 03 2016
-
[lucas_number1(n,1,-9) for n in range(1, 25)] # Zerinvary Lajos, Apr 22 2009
A207538
Triangle of coefficients of polynomials v(n,x) jointly generated with A207537; see Formula section.
Original entry on oeis.org
1, 2, 4, 1, 8, 4, 16, 12, 1, 32, 32, 6, 64, 80, 24, 1, 128, 192, 80, 8, 256, 448, 240, 40, 1, 512, 1024, 672, 160, 10, 1024, 2304, 1792, 560, 60, 1, 2048, 5120, 4608, 1792, 280, 12, 4096, 11264, 11520, 5376, 1120, 84, 1, 8192, 24576, 28160, 15360
Offset: 1
First seven rows:
1
2
4...1
8...4
16..12..1
32..32..6
64..80..24..1
(2, 0, 0, 0, 0, ...) DELTA (0, 1/2, -1/2, 0, 0, 0, ...) begins:
1
2, 0
4, 1, 0
8, 4, 0, 0
16, 12, 1, 0, 0
32, 32, 6, 0, 0, 0
64, 80, 24, 1, 0, 0, 0
128, 192, 80, 8, 0, 0, 0, 0
- Shara Lalo and Zagros Lalo, Polynomial Expansion Theorems and Number Triangles, Zana Publishing, 2018, ISBN: 978-1-9995914-0-3, pp. 80-83, 357-358.
-
u[1, x_] := 1; v[1, x_] := 1; z = 16;
u[n_, x_] := u[n - 1, x] + (x + 1)*v[n - 1, x]
v[n_, x_] := u[n - 1, x] + v[n - 1, x]
Table[Factor[u[n, x]], {n, 1, z}]
Table[Factor[v[n, x]], {n, 1, z}]
cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
TableForm[cu]
Flatten[%] (* A207537, |A028297| *)
Table[Expand[v[n, x]], {n, 1, z}]
cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
TableForm[cv]
Flatten[%] (* A207538, |A133156| *)
t[0, 0] = 1; t[n_, k_] := t[n, k] = If[n < 0 || k < 0, 0, 2 t[n - 1, k] + t[n - 2, k - 1]]; Table[t[n, k], {n, 0, 15}, {k, 0, Floor[n/2]}] // Flatten (* Zagros Lalo, Jul 31 2018 *)
t[n_, k_] := t[n, k] = 2^(n - 2 k) * (n - k)!/((n - 2 k)! k!) ; Table[t[n, k], {n, 0, 15}, {k, 0, Floor[n/2]} ] // Flatten (* Zagros Lalo, Jul 31 2018 *)
A052942
Expansion of 1/((1+x)*(1-2*x+2*x^2-2*x^3)).
Original entry on oeis.org
1, 1, 1, 1, 3, 5, 7, 9, 15, 25, 39, 57, 87, 137, 215, 329, 503, 777, 1207, 1865, 2871, 4425, 6839, 10569, 16311, 25161, 38839, 59977, 92599, 142921, 220599, 340553, 525751, 811593, 1252791, 1933897, 2985399, 4608585, 7114167, 10981961
Offset: 0
encyclopedia(AT)pommard.inria.fr, Jan 25 2000
-
a:=[1,1,1,1];; for n in [5..40] do a[n]:=a[n-1]+2*a[n-4]; od; a; # G. C. Greubel, Jun 12 2019
-
I:=[1,1,1,1]; [n le 4 select I[n] else Self(n-1)+2*Self(n-4): n in [1..40]]; // Vincenzo Librandi, Mar 10 2015
-
spec := [S,{S=Sequence(Union(Z,Prod(Union(Z,Z),Z,Z,Z)))},unlabeled ]: seq(combstruct[count ](spec,size=n), n=0..20);
seq(add(binomial(n-3*k,k)*2^k, k=0..floor(n/3)), n=0..39); # Zerinvary Lajos, Apr 03 2007
with(combstruct): SeqSeqSeqL := [T, {T=Sequence(S), S=Sequence(U, card >= 1), U=Sequence(Z, card >3)}, unlabeled]: seq(count(SeqSeqSeqL, size=j+4), j=0..39); # Zerinvary Lajos, Apr 04 2009
a := n -> `if`(n<9, [1, 1, 1, 1, 3, 5, 7, 9, 15][n+1], hypergeom([(1-n)/4,(2-n)/4,(3-n)/4,-n/4], [(1-n)/3,(2-n)/3,-n/3], -512/27)):
seq(simplify(a(n)),n=0..39); # Peter Luschny, Mar 09 2015
-
CoefficientList[Series[1/(1-x-2*x^4), {x,0,40}], x] (* Vincenzo Librandi, Mar 10 2015 *)
LinearRecurrence[{1,0,0,2},{1,1,1,1},50] (* Harvey P. Dale, Aug 17 2024 *)
-
Vec( 1/(1-x-2*x^4) + O(x^66)) \\ Joerg Arndt, Aug 28 2013
-
(1/(1-x-2*x^4)).series(x, 40).coefficients(x, sparse=False) # G. C. Greubel, Jun 12 2019
A077909
Expansion of 1/((1-x)*(1+x+x^2+2*x^3)).
Original entry on oeis.org
1, 0, 0, -1, 2, 0, 1, -4, 4, -1, 6, -12, 9, -8, 24, -33, 26, -40, 81, -92, 92, -161, 254, -276, 345, -576, 784, -897, 1266, -1936, 2465, -3060, 4468, -6337, 7990, -10588, 15273, -20664, 26568, -36449, 51210, -67896, 89585, -124108, 170316, -225377, 303278, -418532, 566009, -754032, 1025088
Offset: 0
-
a:= n-> (<<0|1|0|0>, <0|0|1|0>, <0|0|0|1>, <2|-1|0|0>>^n.
<<1, 0, 0, -1>>)[1, 1]:
seq(a(n), n=0..60); # Alois P. Heinz, Nov 20 2013
-
CoefficientList[1/(1+x^3-2*x^4) + O[x]^60, x] (* Jean-François Alcover, Jun 08 2015, after Arkadiusz Wesolowski *)
-
Vec( 1/((1-x)*(1+x+x^2+2*x^3)) +O(x^66)) \\ Joerg Arndt, Aug 28 2013
A173284
Triangle by columns, Fibonacci numbers in every column shifted down twice, for k > 0.
Original entry on oeis.org
1, 1, 2, 1, 3, 1, 5, 2, 1, 8, 3, 1, 13, 5, 2, 21, 8, 3, 1, 34, 13, 5, 2, 1, 55, 21, 8, 3, 1, 89, 34, 13, 5, 2, 1, 144, 55, 21, 8, 3, 1, 233, 89, 34, 13, 5, 2, 1, 377, 144, 55, 21, 8, 3, 1, 610, 233, 89, 34, 13, 5, 2, 1
Offset: 0
First few rows of the triangle:
1;
1;
2, 1;
3, 1;
5, 2, 1;
8, 3, 1;
13, 5, 2, 1;
21, 8, 3, 1;
34, 13, 5, 2, 1;
55, 21, 8, 3, 1;
89, 34, 13, 5, 2, 1;
144, 55, 21, 8, 3, 1;
233, 89, 34, 13, 5, 2, 1;
377, 144, 55, 21, 8, 3, 1;
610, 233, 89, 34, 13, 5, 2, 1;
...
-
T := proc(n, k): if n<0 then return(0) elif k < 0 or k > floor(n/2) then return(0) else combinat[fibonacci](n-2*k+1) fi: end: seq(seq(T(n, k), k=0..floor(n/2)), n=0..14); # Johannes W. Meijer, Sep 05 2013
A305098
Triangle read by rows: T(0,0) = 1; T(n,k) = -T(n-1,k) + 2 T(n-2,k-1) for k = 0..floor(n/2); T(n,k)=0 for n or k < 0.
Original entry on oeis.org
1, -1, 1, 2, -1, -4, 1, 6, 4, -1, -8, -12, 1, 10, 24, 8, -1, -12, -40, -32, 1, 14, 60, 80, 16, -1, -16, -84, -160, -80, 1, 18, 112, 280, 240, 32, -1, -20, -144, -448, -560, -192, 1, 22, 180, 672, 1120, 672, 64, -1, -24, -220, -960, -2016, -1792, -448
Offset: 0
Triangle begins:
1;
-1;
1, 2;
-1, -4;
1, 6, 4;
-1, -8, -12;
1, 10, 24, 8;
-1, -12, -40, -32;
1, 14, 60, 80, 16;
-1, -16, -84, -160, -80;
1, 18, 112, 280, 240, 32;
-1, -20, -144, -448, -560, -192;
1, 22, 180, 672, 1120, 672, 64;
-1, -24, -220, -960, -2016, -1792, -448;
1, 26, 264, 1320, 3360, 4032, 1792, 128;
-1, -28, -312, -1760, -5280, -8064, -5376, -1024;
1, 30, 364, 2288, 7920, 14784, 13440, 4608, 256;
-1, -32, -420, -2912, -11440, -25344, -29568, -15360, -2304;
- Shara Lalo and Zagros Lalo, Polynomial Expansion Theorems and Number Triangles, Zana Publishing, 2018, ISBN: 978-1-9995914-0-3, pp. 389-391.
-
t[0, 0] = 1; t[n_, k_] := If[n < 0 || k < 0, 0, -t[n - 1, k] + 2 t[n - 2, k - 1]]; Table[t[n, k], {n, 0, 13}, {k, 0, Floor[n/2]}] // Flatten
-
T(n, k) = if ((n<0) || (k<0), 0, if ((n==0) && (k==0), 1, -T(n-1, k) + 2*T(n-2, k-1)));
tabf(nn) = for (n=0, nn, for (k=0, n\2, print1(T(n,k), ", ")); print); \\ Michel Marcus, May 26 2018
A113726
A Jacobsthal convolution.
Original entry on oeis.org
1, 0, 1, 4, 5, 8, 25, 44, 77, 176, 353, 660, 1365, 2776, 5417, 10876, 21981, 43648, 87153, 175076, 349669, 698280, 1398585, 2797260, 5590381, 11184720, 22373761, 44735284, 89474165, 178969208, 357910345, 715807004, 1431683837, 2863325216
Offset: 0
-
LinearRecurrence[{0,1,4,4},{1,0,1,4},40] (* Harvey P. Dale, Apr 30 2025 *)
A014291
Imaginary Rabbits: imaginary part of a(0)=i; a(1)=-i; a(n) = a(n-1) + i*a(n-2), with i = sqrt(-1).
Original entry on oeis.org
1, -1, -1, -1, -2, -2, -1, 1, 5, 11, 18, 24, 25, 15, -13, -65, -142, -234, -313, -327, -199, 163, 838, 1840, 3041, 4079, 4279, 2639, -2042, -10802, -23841, -39519, -53155, -55989, -34982, 25544, 139225, 308895, 513547, 692655
Offset: 0
- Charles Gely, "Lapins imaginaires et valeurs propres". Quadrature Quarterly #30.
-
a:=[1,-1,-1,-1];; for n in [5..50] do a[n]:=2*a[n-1]-a[n-2]-a[n-4]; od; a; # G. C. Greubel, Jun 13 2019
-
I:=[1, -1, -1, -1]; [n le 4 select I[n] else 2*Self(n-1) - Self(n-2) - Self(n-4): n in [1..50]]; // Vincenzo Librandi, Oct 23 2012
-
CoefficientList[Series[(2*x-1)*(x-1)/(x^4+x^2-2*x+1), {x, 0, 50}], x] (* Vincenzo Librandi, Oct 23 2012 *)
-
my(x='x+O('x^50)); Vec((1-x)*(1-2*x)/(1-2*x+x^2+x^4)) \\ G. C. Greubel, Jun 13 2019
-
((1-x)*(1-2*x)/(1-2*x+x^2+x^4)).series(x, 50).coefficients(x, sparse=False) # G. C. Greubel, Jun 13 2019
A095977
Expansion of g.f. 2*x / ((1+x)^2*(1-2*x)^2).
Original entry on oeis.org
2, 4, 14, 32, 82, 188, 438, 984, 2202, 4852, 10622, 23056, 49762, 106796, 228166, 485448, 1029162, 2174820, 4582670, 9631360, 20194802, 42253724, 88235734, 183927992, 382769082, 795364308, 1650380958, 3420066544, 7078742402, 14634703372, 30223843942, 62356562216
Offset: 1
- G. C. Greubel, Table of n, a(n) for n = 1..1000
- Luca Ferrari and Emanuele Munarini, Enumeration of edges in some lattices of paths, arXiv preprint arXiv:1203.6792 [math.CO], 2012 and J. Int. Seq. 17 (2014) #14.1.5
- A. Flatters, Prime divisors of some Lehmer-Pierce sequences, arXiv:0708.2190 [math.NT], 2007.
- R. P. Grimaldi, Tilings, Compositions, and Generalizations, J. Int. Seq. 13 (2010), 10.6.5, page 7.
- Luka Podrug, Horadam cubes, arXiv:2410.03193 [math.CO], 2024. See p. 11.
- Helmut Prodinger, On binary representations of integers with digits -1,0,1, Integers 0 (2000), #A08.
- Index entries for linear recurrences with constant coefficients, signature (2,3,-4,-4).
-
a:=n->n/9*2^(n+2)+1/27*2^(n+3)-2*n/9*(-1)^n-8/27*(-1)^n: seq(a(n),n=1..30); # Emeric Deutsch, Feb 18 2007
-
Table[(1/27)*((3*n + 2)*2^(n + 2) - (6*n + 8)*(-1)^n) , {n,1,50}] (* G. C. Greubel, Dec 28 2016 *)
-
Vec(2*x / ((1+x)^2 * (1-2*x)^2) + O(x^50)) \\ Michel Marcus, Nov 07 2015
A209634
Triangle with (1,4,7,10,13,16...,(3*n-2),...) in every column, shifted down twice.
Original entry on oeis.org
1, 4, 7, 1, 10, 4, 13, 7, 1, 16, 10, 4, 19, 13, 7, 1, 22, 16, 10, 4, 25, 19, 13, 7, 1, 28, 22, 16, 10, 4, 31, 25, 19, 13, 7, 1, 34, 28, 22, 16, 10, 4, 37, 31, 25, 19, 13, 7, 1, 40, 34, 28, 22, 16, 10, 4, 43, 37, 31, 25, 19, 13, 7, 1, 46, 40, 34, 28, 22, 16, 10
Offset: 1
Triangle:
1
4
7, 1
10, 4
13, 7, 1
16, 10, 4
19, 13, 7, 1
22, 16, 10, 4
25, 19, 13, 7, 1
28, 22, 16, 10, 4
...
-
T := (n, k) -> 3*n - 6*k + 4: seq(seq(T(n, k), k=1..floor((n+1)/2)), n=1..15); # Johannes W. Meijer, Sep 28 2013
Showing 1-10 of 19 results.
Comments