cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A013609 Triangle of coefficients in expansion of (1+2*x)^n.

Original entry on oeis.org

1, 1, 2, 1, 4, 4, 1, 6, 12, 8, 1, 8, 24, 32, 16, 1, 10, 40, 80, 80, 32, 1, 12, 60, 160, 240, 192, 64, 1, 14, 84, 280, 560, 672, 448, 128, 1, 16, 112, 448, 1120, 1792, 1792, 1024, 256, 1, 18, 144, 672, 2016, 4032, 5376, 4608, 2304, 512, 1, 20, 180, 960, 3360, 8064, 13440, 15360, 11520, 5120, 1024
Offset: 0

Views

Author

Keywords

Comments

T(n,k) is the number of lattice paths from (0,0) to (n,k) with steps (1,0) and two kinds of steps (1,1). The number of paths with steps (1,0) and s kinds of steps (1,1) corresponds to the expansion of (1+s*x)^n. - Joerg Arndt, Jul 01 2011
Also sum of rows in A046816. - Lior Manor, Apr 24 2004
Also square array of unsigned coefficients of Chebyshev polynomials of second kind. - Philippe Deléham, Aug 12 2005
The rows give the number of k-simplices in the n-cube. For example, 1, 6, 12, 8 shows that the 3-cube has 1 volume, 6 faces, 12 edges and 8 vertices. - Joshua Zucker, Jun 05 2006
Triangle whose (i, j)-th entry is binomial(i, j)*2^j.
With offset [1,1] the triangle with doubled numbers, 2*a(n,m), enumerates sequences of length m with nonzero integer entries n_i satisfying sum(|n_i|) <= n. Example n=4, m=2: [1,3], [3,1], [2,2] each in 2^2=4 signed versions: 2*a(4,2) = 2*6 = 12. The Sum over m (row sums of 2*a(n,m)) gives 2*3^(n-1), n >= 1. See the W. Lang comment and a K. A. Meissner reference under A024023. - Wolfdieter Lang, Jan 21 2008
n-th row of the triangle = leftmost column of nonzero terms of X^n, where X = an infinite bidiagonal matrix with (1,1,1,...) in the main diagonal and (2,2,2,...) in the subdiagonal. - Gary W. Adamson, Jul 19 2008
Numerators of a matrix square-root of Pascal's triangle A007318, where the denominators for the n-th row are set to 2^n. - Gerald McGarvey, Aug 20 2009
From Johannes W. Meijer, Sep 22 2010: (Start)
The triangle sums (see A180662 for their definitions) link the Pell-Jacobsthal triangle, whose mirror image is A038207, with twenty-four different sequences; see the crossrefs.
This triangle may very well be called the Pell-Jacobsthal triangle in view of the fact that A000129 (Kn21) are the Pell numbers and A001045 (Kn11) the Jacobsthal numbers.
(End)
T(n,k) equals the number of n-length words on {0,1,2} having n-k zeros. - Milan Janjic, Jul 24 2015
T(n-1,k-1) is the number of 2-compositions of n with zeros having k positive parts; see Hopkins & Ouvry reference. - Brian Hopkins, Aug 16 2020
T(n,k) is the number of chains 0=x_0Geoffrey Critzer, Oct 01 2022
Excluding the initial 1, T(n,k) is the number of k-faces of a regular n-cross polytope. See A038207 for n-cube and A135278 for n-simplex. - Mohammed Yaseen, Jan 14 2023

Examples

			Triangle begins:
  1;
  1,  2;
  1,  4,   4;
  1,  6,  12,    8;
  1,  8,  24,   32,   16;
  1, 10,  40,   80,   80,    32;
  1, 12,  60,  160,  240,   192,    64;
  1, 14,  84,  280,  560,   672,   448,    128;
  1, 16, 112,  448, 1120,  1792,  1792,   1024,    256;
  1, 18, 144,  672, 2016,  4032,  5376,   4608,   2304,    512;
  1, 20, 180,  960, 3360,  8064, 13440,  15360,  11520,   5120,  1024;
  1, 22, 220, 1320, 5280, 14784, 29568,  42240,  42240,  28160, 11264,  2048;
  1, 24, 264, 1760, 7920, 25344, 59136, 101376, 126720, 112640, 67584, 24576, 4096;
From _Peter Bala_, Apr 20 2012: (Start)
The triangle can be written as the matrix product A038207*(signed version of A013609).
  |.1................||.1..................|
  |.2...1............||-1...2..............|
  |.4...4...1........||.1..-4...4..........|
  |.8..12...6...1....||-1...6...-12...8....|
  |16..32..24...8...1||.1..-8....24.-32..16|
  |..................||....................|
(End)
		

References

  • B. N. Cyvin et al., Isomer enumeration of unbranched catacondensed polygonal systems with pentagons and heptagons, Match, No. 34 (Oct 1996), pp. 109-121.
  • G. Hotz, Zur Reduktion von Schaltkreispolynomen im Hinblick auf eine Verwendung in Rechenautomaten, El. Datenverarbeitung, Folge 5 (1960), pp. 21-27.

Crossrefs

Cf. A007318, A013610, etc.
Appears in A167580 and A167591. - Johannes W. Meijer, Nov 23 2009
From Johannes W. Meijer, Sep 22 2010: (Start)
Triangle sums (see the comments): A000244 (Row1); A000012 (Row2); A001045 (Kn11); A026644 (Kn12); 4*A011377 (Kn13); A000129 (Kn21); A094706 (Kn22); A099625 (Kn23); A001653 (Kn3); A007583 (Kn4); A046717 (Fi1); A007051 (Fi2); A077949 (Ca1); A008998 (Ca2); A180675 (Ca3); A092467 (Ca4); A052942 (Gi1); A008999 (Gi2); A180676 (Gi3); A180677 (Gi4); A140413 (Ze1); A180678 (Ze2); A097117 (Ze3); A055588 (Ze4).
(End)
T(2n,n) gives A059304.

Programs

  • Haskell
    a013609 n = a013609_list !! n
    a013609_list = concat $ iterate ([1,2] *) [1]
    instance Num a => Num [a] where
       fromInteger k = [fromInteger k]
       (p:ps) + (q:qs) = p + q : ps + qs
       ps + qs         = ps ++ qs
       (p:ps) * qs'@(q:qs) = p * q : ps * qs' + [p] * qs
        *                = []
    -- Reinhard Zumkeller, Apr 02 2011
    
  • Haskell
    a013609 n k = a013609_tabl !! n !! k
    a013609_row n = a013609_tabl !! n
    a013609_tabl = iterate (\row -> zipWith (+) ([0] ++ row) $
                                    zipWith (+) ([0] ++ row) (row ++ [0])) [1]
    -- Reinhard Zumkeller, Jul 22 2013, Feb 27 2013
    
  • Magma
    [2^k*Binomial(n,k): k in [0..n], n in [0..15]]; // G. C. Greubel, Sep 17 2021
    
  • Maple
    bin2:=proc(n,k) option remember; if k<0 or k>n then 0 elif k=0 then 1 else 2*bin2(n-1,k-1)+bin2(n-1,k); fi; end; # N. J. A. Sloane, Jun 01 2009
  • Mathematica
    Flatten[Table[CoefficientList[(1 + 2*x)^n, x], {n, 0, 10}]][[1 ;; 59]] (* Jean-François Alcover, May 17 2011 *)
    BinomialROW[n_, k_, t_] := Sum[Binomial[n, k]*Binomial[k, j]*(-1)^(k - j)*t^j, {j, 0, k}]; Column[Table[BinomialROW[n, k, 3], {n, 0, 10}, {k, 0, n}], Center] (* Kolosov Petro, Jan 28 2019 *)
  • Maxima
    a(n,k):=coeff(expand((1+2*x)^n),x^k);
    create_list(a(n,k),n,0,6,k,0,n); /* Emanuele Munarini, Nov 21 2012 */
    
  • PARI
    /* same as in A092566 but use */
    steps=[[1,0], [1,1], [1,1]]; /* note double [1,1] */
    /* Joerg Arndt, Jul 01 2011 */
    
  • Sage
    flatten([[2^k*binomial(n,k) for k in (0..n)] for n in (0..15)]) # G. C. Greubel, Sep 17 2021

Formula

G.f.: 1 / (1 - x*(1+2*y)).
T(n,k) = 2^k*binomial(n,k).
T(n,k) = 2*T(n-1,k-1) + T(n-1,k). - Jon Perry, Nov 22 2005
Row sums are 3^n = A000244(n). - Joerg Arndt, Jul 01 2011
T(n,k) = Sum_{i=n-k..n} C(i,n-k)*C(n,i). - Mircea Merca, Apr 28 2012
E.g.f.: exp(2*y*x + x). - Geoffrey Critzer, Nov 12 2012
Riordan array (x/(1 - x), 2*x/(1 - x)). Exp(2*x) * e.g.f. for row n = e.g.f. for diagonal n. For example, for n = 3 we have exp(2*x)*(1 + 6*x + 12*x^2/2! + 8*x^3/3!) = 1 + 8*x + 40*x^2/2! + 160*x^3/3! + 560*x^4/4! + .... The same property holds more generally for Riordan arrays of the form (f(x), 2*x/(1 - x)). - Peter Bala, Dec 21 2014
T(n,k) = Sum_{j=0..k} (-1)^(k-j) * binomial(n,k) * binomial(k,j) * 3^j. - Kolosov Petro, Jan 28 2019
T(n,k) = 2*(n+1-k)*T(n,k-1)/k, T(n,0) = 1. - Alexander R. Povolotsky, Oct 08 2023
For n >= 1, GCD(T(n,1), ..., T(n,n)) = GCD(T(n,1),T(n,n)) = GCD(2*n,2^n) = A171977(n). - Pontus von Brömssen, Nov 01 2024

A128099 Triangle read by rows: T(n,k) is the number of ways to tile a 3 X n rectangle with k pieces of 2 X 2 tiles and 3n-4k pieces of 1 X 1 tiles (0 <= k <= floor(n/2)).

Original entry on oeis.org

1, 1, 1, 2, 1, 4, 1, 6, 4, 1, 8, 12, 1, 10, 24, 8, 1, 12, 40, 32, 1, 14, 60, 80, 16, 1, 16, 84, 160, 80, 1, 18, 112, 280, 240, 32, 1, 20, 144, 448, 560, 192, 1, 22, 180, 672, 1120, 672, 64, 1, 24, 220, 960, 2016, 1792, 448, 1, 26, 264, 1320, 3360, 4032, 1792, 128, 1, 28
Offset: 0

Views

Author

Emeric Deutsch, Feb 18 2007

Keywords

Comments

Row sums are the Jacobsthal numbers (A001045).
Apparently, T(n,k)/2^n equals the probability P that n will occur as a partial sum in a randomly-generated infinite sequence of 1s and 2s with n compositions (ordered partitions) into (n-2k) 1s and k 2s. Example: T(6,2)=24; P = 3/8 (24/2^6) that 6 will occur as a partial sum in the sequence with 2 (6-2*2) 1s and 2 2s. - Bob Selcoe, Jul 06 2013
From Johannes W. Meijer, Aug 28 2013: (Start)
The antidiagonal sums are A077949 and the backwards antidiagonal sums are A052947.
Moving the terms in each column of this triangle, see the example, upwards to row 0 gives the Pell-Jacobsthal triangle A013609 as a square array. (End)
The numbers in rows of the triangle are along "first layer" skew diagonals pointing top-right in center-justified triangle given in A013609 ((1+2*x)^n) and along (first layer) skew diagonals pointing top-left in center-justified triangle given in A038207 ((2+x)^n), see links. - Zagros Lalo, Jul 31 2018
If s(n) is the row sum at n, then the ratio s(n)/s(n-1) is approximately 2.000..., when n approaches infinity. - Zagros Lalo, Jul 31 2018
It appears that the rows of this array are the coefficients of the Jacobsthal polynomials (see MathWorld link). - Michel Marcus, Jun 15 2019

Examples

			Triangle starts:
  1;
  1;
  1,  2;
  1,  4;
  1,  6,  4;
  1,  8, 12;
  1, 10, 24,  8;
  1, 12, 40, 32;
		

References

  • Shara Lalo and Zagros Lalo, Polynomial Expansion Theorems and Number Triangles, Zana Publishing, 2018, ISBN: 978-1-9995914-0-3, pp. 80-83, 357-358

Crossrefs

Cf. (Triangle sums) A001045, A095977, A077949, A052947, A113726, A052942, A077909.
Cf. (Similar triangles) A008315, A011973, A102541.

Programs

  • Maple
    T := proc(n,k) if k<=n/2 then 2^k*binomial(n-k,k) else 0 fi end: for n from 0 to 16 do seq(T(n,k),k=0..floor(n/2)) od; # yields sequence in triangular form
    T := proc(n, k) option remember: if k<0 or k > floor(n/2) then return(0) fi: if k = 0 then return(1) fi: 2*procname(n-2, k-1) + procname(n-1, k): end: seq(seq(T(n, k), k=0..floor(n/2)), n=0..13); # Johannes W. Meijer, Aug 28 2013
  • Mathematica
    Table[2^k*Binomial[n - k, k] , {n,0,25}, {k,0,Floor[n/2]}] // Flatten  (* G. C. Greubel, Dec 28 2016 *)
    t[0, 0] = 1; t[n_, k_] := t[n, k] = If[n < 0 || k < 0, 0, t[n - 1, k] + 2 t[n - 2, k - 1]]; Table[t[n, k], {n, 0, 15}, {k, 0, Floor[n/2]}] // Flatten (* Zagros Lalo, Jul 31 2018 *)

Formula

T(n, k) = 2^k*binomial(n-k,k) = 2^k*A011973(n,k).
G.f.: 1/(1-z-2*t*z^2).
Sum_{k=0..floor(n/2)} k*T(n,k) = A095977(n-1).
From Johannes W. Meijer, Aug 28 2013: (Start)
T(n, k) = 2*T(n-2, k-1) + T(n-1, k) with T(n, 0) = 1 and T(n, k) = 0 for k < 0 and k > floor(n/2).
T(n, k) = A013609(n-k, k), n >= 0 and 0 <= k <= floor(n/2). (End)

A143453 Square array A(n,k) of numbers of length n ternary words with at least k 0-digits between any other digits (n,k >= 0), read by antidiagonals.

Original entry on oeis.org

1, 1, 3, 1, 3, 9, 1, 3, 5, 27, 1, 3, 5, 11, 81, 1, 3, 5, 7, 21, 243, 1, 3, 5, 7, 13, 43, 729, 1, 3, 5, 7, 9, 23, 85, 2187, 1, 3, 5, 7, 9, 15, 37, 171, 6561, 1, 3, 5, 7, 9, 11, 25, 63, 341, 19683, 1, 3, 5, 7, 9, 11, 17, 39, 109, 683, 59049, 1, 3, 5, 7, 9, 11, 13, 27, 57, 183, 1365, 177147
Offset: 0

Views

Author

Alois P. Heinz, Aug 16 2008

Keywords

Examples

			A(3,1) = 11, because 11 ternary words of length 3 have at least 1 0-digit between any other digits: 000, 001, 002, 010, 020, 100, 101, 102, 200, 201, 202.
Square array A(n,k) begins:
     1,   1,  1,  1,  1,  1,  1,  1, ...
     3,   3,  3,  3,  3,  3,  3,  3, ...
     9,   5,  5,  5,  5,  5,  5,  5, ...
    27,  11,  7,  7,  7,  7,  7,  7, ...
    81,  21, 13,  9,  9,  9,  9,  9, ...
   243,  43, 23, 15, 11, 11, 11, 11, ...
   729,  85, 37, 25, 17, 13, 13, 13, ...
  2187, 171, 63, 39, 27, 19, 15, 15, ...
		

Crossrefs

Column k=0: A000244, k=1: A001045(n+2), k=2: A003229(n+1) and A077949(n+2), k=3: A052942(n+3), k=4: A143447, k=5: A143448, k=6: A143449, k=7: A143450, k=8: A143451, k=9: A143452.
Diagonal: A005408.

Programs

  • Maple
    A := proc (n::nonnegint, k::nonnegint) option remember; if k=0 then 3^n elif n<=k+1 then 2*n+1 else A(n-1, k) +2*A(n-k-1, k) fi end: seq(seq(A(n,d-n), n=0..d), d=0..14);
  • Mathematica
    a[n_, 0] := 3^n; a[n_, k_] /; n <= k+1 := 2*n+1; a[n_, k_] := a[n, k] = a[n-1, k] + 2*a[n-k-1, k]; Table[a[n-k, k], {n, 0, 14}, {k, n, 0, -1}] // Flatten (* Jean-François Alcover, Dec 11 2013 *)

Formula

G.f. of column k: 1/(x^k*(1-x-2*x^(k+1))).
A(n,k) = 3^n if k=0, else A(n,k) = 2*n+1 if n<=k+1, else A(n,k) = A(n-1,k) + 2*A(n-k-1,k).

A180676 The Gi3 sums of the Pell-Jacobsthal triangle A013609.

Original entry on oeis.org

1, 1, 1, 1, 17, 337, 6641, 130865, 2578785, 50816737, 1001378849, 19732860833, 388849631729, 7662550168241, 150995835638929, 2975477077435217, 58633827885912001, 1155420016046016193, 22768348266078953793
Offset: 0

Views

Author

Johannes W. Meijer, Sep 21 2010

Keywords

Comments

The a(n+3) represent the Gi3 sums of the Pell-Jacobsthal triangle A013609. See A180662 for information about these giraffe and other chess sums.

Crossrefs

Cf. A052942 (Gi1), A008999 (Gi2), this sequence (Gi3), A180677 (Gi4).

Programs

  • GAP
    a:=[1,1,1,1];; for n in [5..30] do a[n]:=20*a[n-1]-6*a[n-2] + 4*a[n-3]-a[n-4]; od; a; # G. C. Greubel, Jun 11 2019
  • Magma
    R:=PowerSeriesRing(Integers(), 30); Coefficients(R!( (1-19*x-13*x^2-17*x^3)/(1-20*x+6*x^2-4*x^3+x^4) )); // G. C. Greubel, Jun 11 2019
    
  • Maple
    nmax:=18: a(0):=1: a(1):=1: a(2):=1: a(3):=1: for n from 4 to nmax do a(n) := 20*a(n-1)-6*a(n-2)+4*a(n-3)-a(n-4) od: seq(a(n),n=0..nmax);
  • Mathematica
    LinearRecurrence[{20,-6,4,-1},{1,1,1,1},20] (* Harvey P. Dale, Jun 07 2015 *)
  • PARI
    my(x='x+O('x^30)); Vec((1-19*x-13*x^2-17*x^3)/(1-20*x+6*x^2-4*x^3 +x^4)) \\ G. C. Greubel, Jun 11 2019
    
  • Sage
    ((1-19*x-13*x^2-17*x^3)/(1-20*x+6*x^2-4*x^3+x^4)).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, Jun 11 2019
    

Formula

a(n) = 20*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4) with a(0)=1, a(1)=1, a(2)=1 and a(3)=1.
a(n+3) = Sum_{k=0..n} A013609(n+3*k,4*k).
G.f.: (1-19*x-13*x^2-17*x^3)/(1-20*x+6*x^2-4*x^3+x^4).

A180677 The Gi4 sums of the Pell-Jacobsthal triangle A013609.

Original entry on oeis.org

1, 3, 15, 87, 503, 2871, 16311, 92599, 525751, 2985399, 16952759, 96267703, 546663863, 3104271799, 17627835831, 100100959671, 568430652855, 3227875241399, 18329726840247, 104086701305271, 591063984860599
Offset: 0

Views

Author

Johannes W. Meijer, Sep 21 2010

Keywords

Comments

The a(n) represent the Gi4 sums of the Pell-Jacobsthal triangle A013609. See A180662 for information about these giraffe and other chess sums.

Crossrefs

Cf. A052942 (Gi1), A008999 (Gi2), A180676 (Gi3), this sequence (Gi4).

Programs

  • GAP
    a:=[1,3,15,87];; for n in [5..30] do a[n]:=9*a[n-1]-24*a[n-2] +32*a[n-3]-16*a[n-4]; od; a; # G. C. Greubel, Jun 11 2019
  • Magma
    R:=PowerSeriesRing(Integers(), 30); Coefficients(R!( (1-6*x+ 12*x^2-8*x^3)/(1-9*x+24*x^2-32*x^3+16*x^4) )); // G. C. Greubel, Jun 11 2019
    
  • Maple
    nmax:=21: a(0):=1: a(1):=3: a(2):=15: a(3):=87: for n from 4 to nmax do a(n) := 9*a(n-1)-24*a(n-2)+32*a(n-3)-16*a(n-4) od: seq(a(n),n=0..nmax);
  • Mathematica
    LinearRecurrence[{9,-24,32,-16}, {1,3,15,87}, 30] (* G. C. Greubel, Jun 11 2019 *)
  • PARI
    my(x='x+O('x^30)); Vec((1-6*x+12*x^2-8*x^3)/(1-9*x+24*x^2-32*x^3 +16*x^4)) \\ G. C. Greubel, Jun 11 2019
    
  • Sage
    ((1-6*x+12*x^2-8*x^3)/(1-9*x+24*x^2-32*x^3+16*x^4)).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, Jun 11 2019
    

Formula

a(n) = 9*a(n-1) - 24*a(n-2) + 32*a(n-3) - 16*a(n-4) with a(0)=1, a(1)=3, a(2)= 15 and a(3)= 87.
a(n) = Sum_{k=0..n} A013609(n+3*k,n-k).
G.f.: (1-6*x+12*x^2-8*x^3)/(1-9*x+24*x^2-32*x^3+16*x^4).

A172368 Triangle read by rows: T(n,k) = round(c(n)/(c(k)*c(n-k))) where c is a sequence defined in comments.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 3, 3, 3, 1, 1, 5, 15, 15, 15, 5, 1, 1, 7, 35, 105, 105, 35, 7, 1, 1, 9, 63, 315, 945, 315, 63, 9, 1, 1, 15, 135, 945, 4725, 4725, 945, 135, 15, 1, 1, 25, 375, 3375, 23625, 39375, 23625, 3375, 375, 25, 1
Offset: 0

Views

Author

Roger L. Bagula, Feb 01 2010

Keywords

Comments

Start from A052942 and its partial products c(n) = 1, 1, 1, 1, 1, 3, 15, 105, 945, ... . Then T(n,k) = round(c(n)/(c(k)*c(n-k))).

Examples

			Triangle begins as:
  1;
  1,  1;
  1,  1,   1;
  1,  1,   1,    1;
  1,  1,   1,    1,     1;
  1,  3,   3,    3,     3,     1;
  1,  5,  15,   15,    15,     5,     1;
  1,  7,  35,  105,   105,    35,     7,    1;
  1,  9,  63,  315,   945,   315,    63,    9,   1;
  1, 15, 135,  945,  4725,  4725,   945,  135,  15,  1;
  1, 25, 375, 3375, 23625, 39375, 23625, 3375, 375, 25, 1;
		

Crossrefs

Cf. A052942, A172363 (q=1), this sequence (q=2), A172369 (q=3).

Programs

  • Mathematica
    f[n_, q_]:= f[n, q]= If[n==0,0,If[n<4, 1, f[n-1, q] + q*f[n-4, q]]];
    c[n_, q_]:= Product[f[j, q], {j,n}];
    T[n_, k_, q_]:= Round[c[n, q]/(c[k, q]*c[n-k, q])];
    Table[T[n, k, 2], {n,0,12}, {k,0,n}]//Flatten (* modified by G. C. Greubel, May 08 2021 *)
  • Sage
    @CachedFunction
    def f(n,q): return 0 if (n==0) else 1 if (n<4) else f(n-1, q) + q*f(n-4, q)
    def c(n,q): return product( f(j,q) for j in (1..n) )
    def T(n,k,q): return round(c(n, q)/(c(k, q)*c(n-k, q)))
    flatten([[T(n,k,2) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, May 08 2021

Formula

T(n, k, q) = round( c(n,q)/(c(k,q)*c(n-k,q)) ), where c(n, q) = Product_{j=1..n} f(j, q), f(n, q) = f(n-1, q) + q*f(n-4, q), f(0, q) = 0, f(1, q) = f(2, q) = f(3, q) = 1, and q = 2. - G. C. Greubel, May 08 2021

Extensions

Definition corrected to give integral terms, G. C. Greubel, May 08 2021

A193516 T(n,k) = number of ways to place any number of 4X1 tiles of k distinguishable colors into an nX1 grid.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 3, 3, 1, 1, 1, 4, 5, 4, 1, 1, 1, 5, 7, 7, 5, 1, 1, 1, 6, 9, 10, 9, 7, 1, 1, 1, 7, 11, 13, 13, 15, 10, 1, 1, 1, 8, 13, 16, 17, 25, 25, 14, 1, 1, 1, 9, 15, 19, 21, 37, 46, 39, 19, 1, 1, 1, 10, 17, 22, 25, 51, 73, 76, 57, 26, 1, 1, 1, 11, 19, 25, 29, 67, 106, 125
Offset: 1

Views

Author

R. H. Hardin, with proof and formula from Robert Israel in the Sequence Fans Mailing List, Jul 29 2011

Keywords

Comments

Table starts:
..1...1...1...1....1....1....1....1....1....1....1.....1.....1.....1.....1
..1...1...1...1....1....1....1....1....1....1....1.....1.....1.....1.....1
..1...1...1...1....1....1....1....1....1....1....1.....1.....1.....1.....1
..2...3...4...5....6....7....8....9...10...11...12....13....14....15....16
..3...5...7...9...11...13...15...17...19...21...23....25....27....29....31
..4...7..10..13...16...19...22...25...28...31...34....37....40....43....46
..5...9..13..17...21...25...29...33...37...41...45....49....53....57....61
..7..15..25..37...51...67...85..105..127..151..177...205...235...267...301
.10..25..46..73..106..145..190..241..298..361..430...505...586...673...766
.14..39..76.125..186..259..344..441..550..671..804...949..1106..1275..1456
.19..57.115.193..291..409..547..705..883.1081.1299..1537..1795..2073..2371
.26..87.190.341..546..811.1142.1545.2026.2591.3246..3997..4850..5811..6886
.36.137.328.633.1076.1681.2472.3473.4708.6201.7976.10057.12468.15233.18376

Examples

			Some solutions for n=9 k=3; colors=1, 2, 3; empty=0
..0....3....0....0....3....3....0....0....0....0....2....2....0....0....1....2
..1....3....0....2....3....3....3....0....0....0....2....2....1....0....1....2
..1....3....0....2....3....3....3....2....0....0....2....2....1....0....1....2
..1....3....3....2....3....3....3....2....1....0....2....2....1....0....1....2
..1....0....3....2....0....3....3....2....1....0....2....0....1....0....0....0
..2....3....3....2....0....3....3....2....1....3....2....2....0....0....0....3
..2....3....3....2....0....3....3....0....1....3....2....2....0....0....0....3
..2....3....0....2....0....3....3....0....0....3....2....2....0....0....0....3
..2....3....0....2....0....0....3....0....0....3....0....2....0....0....0....3
		

Crossrefs

Column 1 is A003269(n+1),
Column 2 is A052942,
Column 3 is A143454(n-3),
Row 8 is A082111,
Row 9 is A100536(n+1),
Row 10 is A051866(n+1).

Programs

  • Maple
    T:= proc(n, k) option remember;
          `if`(n<0, 0,
          `if`(n<4 or k=0, 1, k*T(n-4, k) +T(n-1, k)))
        end:
    seq(seq(T(n, d+1-n), n=1..d), d=1..13); # Alois P. Heinz, Jul 29 2011
  • Mathematica
    T[n_, k_] := T[n, k] = If[n < 0, 0, If[n < 4 || k == 0, 1, k*T[n-4, k]+T[n-1, k]]]; Table[Table[T[n, d+1-n], {n, 1, d}], {d, 1, 13}] // Flatten (* Jean-François Alcover, Mar 04 2014, after Alois P. Heinz *)

Formula

With z X 1 tiles of k colors on an n X 1 grid (with n >= z), either there is a tile (of any of the k colors) on the first spot, followed by any configuration on the remaining (n-z) X 1 grid, or the first spot is vacant, followed by any configuration on the remaining (n-1) X 1. So T(n,k) = T(n-1,k) + k*T(n-z,k), with T(n,k) = 1 for n=0,1,...,z-1. The solution is T(n,k) = sum_r r^(-n-1)/(1 + z k r^(z-1)) where the sum is over the roots of the polynomial k x^z + x - 1.
T(n,k) = sum {s=0..[n/4]} (binomial(n-3*s,s)*k^s).
For z X 1 tiles, T(n,k,z) = sum{s=0..[n/z]} (binomial(n-(z-1)*s,s)*k^s). - R. H. Hardin, Jul 31 2011

A242763 a(n) = 1 for n <= 7; a(n) = a(n-5) + a(n-7) for n>7.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 3, 3, 4, 4, 4, 5, 5, 7, 7, 8, 9, 9, 12, 12, 15, 16, 17, 21, 21, 27, 28, 32, 37, 38, 48, 49, 59, 65, 70, 85, 87, 107, 114, 129, 150, 157, 192, 201, 236, 264, 286, 342, 358, 428, 465, 522, 606, 644, 770, 823, 950, 1071, 1166, 1376
Offset: 1

Views

Author

Keywords

Comments

Generalized Fibonacci growth sequence using i = 2 as maturity period, j = 5 as conception period, and k = 2 as growth factor.
Maturity period is the number of periods that a Fibonacci tree node needs for being able to start developing branches. Conception period is the number of periods in a Fibonacci tree node needed to develop new branches since its maturity. Growth factor is the number of additional branches developed by a Fibonacci tree node, plus 1, and equals the base of the exponential series related to the given tree if maturity factor would be zero. Standard Fibonacci would use 1 as maturity period, 1 as conception period, and 2 as growth factor as the series becomes equal to 2^n with a maturity period of 0. Related to Lucas sequences.

Examples

			For n = 13 the a(13) = a(8) + a(6) = 2 + 1 = 3.
		

Crossrefs

Cf. A000079 (i = 0, j = 1, k = 2), A000244 (i = 0, j = 1, k = 3), A000302 (i = 0, j = 1, k = 4), A000351 (i = 0, j = 1, k = 5), A000400 (i = 0, j = 1, k = 6), A000420 (i = 0, j = 1, k = 7), A001018 (i = 0, j = 1, k = 8), A001019 (i = 0, j = 1, k = 9), A011557 (i = 0, j = 1, k = 10), A001020 (i = 0, j = 1, k = 11), A001021 (i = 0, j = 1, k = 12), A016116 (i = 0, j = 2, k = 2), A108411 (i = 0, j = 2, k = 3), A213173 (i = 0, j = 2, k = 4), A074872 (i = 0, j = 2, k = 5), A173862 (i = 0, j = 3, k = 2), A127975 (i = 0, j = 3, k = 3), A200675 (i = 0, j = 4, k = 2), A111575 (i = 0, j = 4, k = 3), A000045 (i = 1, j = 1, k = 2), A001045 (i = 1, j = 1, k = 3), A006130 (i = 1, j = 1, k = 4), A006131 (i = 1, j = 1, k = 5), A015440 (i = 1, j = 1, k = 6), A015441 (i = 1, j = 1, k = 7), A015442 (i = 1, j = 1, k = 8), A015443 (i = 1, j = 1, k = 9), A015445 (i = 1, j = 1, k = 10), A015446 (i = 1, j = 1, k = 11), A015447 (i = 1, j = 1, k = 12), A000931 (i = 1, j = 2, k = 2), A159284 (i = 1, j = 2, k = 3), A238389 (i = 1, j = 2, k = 4), A097041 (i = 1, j = 2, k = 10), A079398 (i = 1, j = 3, k = 2), A103372 (i = 1, j = 4, k = 2), A103373 (i = 1, j = 5, k = 2), A103374 (i = 1, j = 6, k = 2), A000930 (i = 2, j = 1, k = 2), A077949 (i = 2, j = 1, k = 3), A084386 (i = 2, j = 1, k = 4), A089977 (i = 2, j = 1, k = 5), A178205 (i = 2, j = 1, k = 11), A103609 (i = 2, j = 2, k = 2), A077953 (i = 2, j = 2, k = 3), A226503 (i = 2, j = 3, k = 2), A122521 (i = 2, j = 6, k = 2), A003269 (i = 3, j = 1, k = 2), A052942 (i = 3, j = 1, k = 3), A005686 (i = 3, j = 2, k = 2), A237714 (i = 3, j = 2, k = 3), A238391 (i = 3, j = 2, k = 4), A247049 (i = 3, j = 3, k = 2), A077886 (i = 3, j = 3, k = 3), A003520 (i = 4, j = 1, k = 2), A108104 (i = 4, j = 2, k = 2), A005708 (i = 5, j = 1, k = 2), A237716 (i = 5, j = 2, k = 3), A005709 (i = 6, j = 1, k = 2), A122522 (i = 6, j = 2, k = 2), A005710 (i = 7, j = 1, k = 2), A237718 (i = 7, j = 2, k = 3), A017903 (i = 8, j = 1, k = 2).

Programs

  • Magma
    [n le 7 select 1 else Self(n-5)+Self(n-7): n in [1..70]]; // Vincenzo Librandi, Nov 30 2016
    
  • Mathematica
    LinearRecurrence[{0, 0, 0, 0, 1, 0, 1}, {1, 1, 1, 1, 1, 1, 1}, 70] (*  or *)
    CoefficientList[ Series[(1+x+x^2+x^3+x^4)/(1-x^5-x^7), {x, 0, 70}], x] (* Robert G. Wilson v, Nov 25 2016 *)
    nxt[{a_,b_,c_,d_,e_,f_,g_}]:={b,c,d,e,f,g,a+c}; NestList[nxt,{1,1,1,1,1,1,1},70][[;;,1]] (* Harvey P. Dale, Oct 22 2024 *)
  • PARI
    Vec(x*(1+x+x^2+x^3+x^4)/((1-x+x^2)*(1+x-x^3-x^4-x^5)) + O(x^100)) \\ Colin Barker, Oct 27 2016
    
  • SageMath
    @CachedFunction # a = A242763
    def a(n): return 1 if n<8 else a(n-5) +a(n-7)
    [a(n) for n in range(1,76)] # G. C. Greubel, Oct 23 2024

Formula

Generic a(n) = 1 for n <= i+j; a(n) = a(n-j) + (k-1)*a(n-(i+j)) for n>i+j where i = maturity period, j = conception period, k = growth factor.
G.f.: x*(1+x+x^2+x^3+x^4) / ((1-x+x^2)*(1+x-x^3-x^4-x^5)). - Colin Barker, Oct 09 2016
Generic g.f.: x*(Sum_{l=0..j-1} x^l) / (1-x^j-(k-1)*x^(i+j)), with i > 0, j > 0 and k > 1.

A317500 Triangle read by rows: T(0,0) = 1; T(n,k) = T(n-1,k) + 2 * T(n-4,k-1) for k = 0..floor(n/4); T(n,k)=0 for n or k < 0.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 4, 1, 6, 1, 8, 1, 10, 4, 1, 12, 12, 1, 14, 24, 1, 16, 40, 1, 18, 60, 8, 1, 20, 84, 32, 1, 22, 112, 80, 1, 24, 144, 160, 1, 26, 180, 280, 16, 1, 28, 220, 448, 80, 1, 30, 264, 672, 240, 1, 32, 312, 960, 560, 1, 34, 364, 1320, 1120, 32
Offset: 0

Views

Author

Zagros Lalo, Sep 03 2018

Keywords

Comments

The numbers in rows of the triangle are along a "third layer" skew diagonals pointing top-right in center-justified triangle given in A013609 ((1+2*x)^n) and along a "third layer" skew diagonals pointing top-left in center-justified triangle given in A038207 ((2+x)^n), see links. (Note: First layer skew diagonals in center-justified triangles of coefficients in expansions of (1+2*x)^n and (2+x)^n are given in A128099 and A207538 respectively.)
The coefficients in the expansion of 1/(1-x-2*x^4) are given by the sequence generated by the row sums.
The row sums give A052942.
If s(n) is the row sum at n, then the ratio s(n)/s(n-1) is approximately 1.543689012692076... (A256099: Decimal expansion of the real root of a cubic used by Omar Khayyám in a geometrical problem), when n approaches infinity.

Examples

			Triangle begins:
  1;
  1;
  1;
  1;
  1,  2;
  1,  4;
  1,  6;
  1,  8;
  1, 10,   4;
  1, 12,  12;
  1, 14,  24;
  1, 16,  40;
  1, 18,  60,   8;
  1, 20,  84,  32;
  1, 22, 112,  80;
  1, 24, 144, 160;
  1, 26, 180, 280,  16;
  1, 28, 220, 448,  80;
  1, 30, 264, 672, 240;
...
		

References

  • Shara Lalo and Zagros Lalo, Polynomial Expansion Theorems and Number Triangles, Zana Publishing, 2018, ISBN: 978-1-9995914-0-3.

Crossrefs

Row sums give A052942.

Programs

  • Mathematica
    t[n_, k_] := t[n, k] = 2^k/((n - 4 k)! k!) (n - 3 k)!; Table[t[n, k], {n, 0, 20}, {k, 0, Floor[n/4]} ] // Flatten
    t[0, 0] = 1; t[n_, k_] := t[n, k] = If[n < 0 || k < 0, 0, t[n - 1, k] + 2 t[n - 4, k - 1]]; Table[t[n, k], {n, 0, 20}, {k, 0, Floor[n/4]}] // Flatten

Formula

T(n,k) = 2^k / ((n - 4*k)! k!) * (n - 3*k)! where n >= 0 and 0 <= k <= floor(n/4).
Showing 1-9 of 9 results.