A013609
Triangle of coefficients in expansion of (1+2*x)^n.
Original entry on oeis.org
1, 1, 2, 1, 4, 4, 1, 6, 12, 8, 1, 8, 24, 32, 16, 1, 10, 40, 80, 80, 32, 1, 12, 60, 160, 240, 192, 64, 1, 14, 84, 280, 560, 672, 448, 128, 1, 16, 112, 448, 1120, 1792, 1792, 1024, 256, 1, 18, 144, 672, 2016, 4032, 5376, 4608, 2304, 512, 1, 20, 180, 960, 3360, 8064, 13440, 15360, 11520, 5120, 1024
Offset: 0
Triangle begins:
1;
1, 2;
1, 4, 4;
1, 6, 12, 8;
1, 8, 24, 32, 16;
1, 10, 40, 80, 80, 32;
1, 12, 60, 160, 240, 192, 64;
1, 14, 84, 280, 560, 672, 448, 128;
1, 16, 112, 448, 1120, 1792, 1792, 1024, 256;
1, 18, 144, 672, 2016, 4032, 5376, 4608, 2304, 512;
1, 20, 180, 960, 3360, 8064, 13440, 15360, 11520, 5120, 1024;
1, 22, 220, 1320, 5280, 14784, 29568, 42240, 42240, 28160, 11264, 2048;
1, 24, 264, 1760, 7920, 25344, 59136, 101376, 126720, 112640, 67584, 24576, 4096;
From _Peter Bala_, Apr 20 2012: (Start)
The triangle can be written as the matrix product A038207*(signed version of A013609).
|.1................||.1..................|
|.2...1............||-1...2..............|
|.4...4...1........||.1..-4...4..........|
|.8..12...6...1....||-1...6...-12...8....|
|16..32..24...8...1||.1..-8....24.-32..16|
|..................||....................|
(End)
- B. N. Cyvin et al., Isomer enumeration of unbranched catacondensed polygonal systems with pentagons and heptagons, Match, No. 34 (Oct 1996), pp. 109-121.
- G. Hotz, Zur Reduktion von Schaltkreispolynomen im Hinblick auf eine Verwendung in Rechenautomaten, El. Datenverarbeitung, Folge 5 (1960), pp. 21-27.
- T. D. Noe, Rows n=0..50 of triangle, flattened
- Feryal Alayont and Evan Henning, Edge Covers of Caterpillars, Cycles with Pendants, and Spider Graphs, J. Int. Seq. (2023) Vol. 26, Art. 23.9.4.
- H. J. Brothers, Pascal's Prism: Supplementary Material, PDF version.
- John Cartan, Cartan's triangle shows the relationship to the n-cube.
- R. Ehrenborg and M. Readdy, Characterization of the factorial functions of Eulerian binomial and Sheffer posets
- J. Goldman and J. Haglund, Generalized rook polynomials, J. Combin. Theory A91 (2000), 509-530, 1-rook coefficients of k rooks on the 2xn board, all heights 2.
- W. G. Harter, Representations of multidimensional symmetries in networks, J. Math. Phys., 15 (1974), 2016-2021.
- Brian Hopkins and Stéphane Ouvry, Combinatorics of Multicompositions, arXiv:2008.04937 [math.CO], 2020.
- D. A. Zaitsev, A generalized neighborhood for cellular automata, Theoretical Computer Science, 666 (2017), 21-35.
-
a013609 n = a013609_list !! n
a013609_list = concat $ iterate ([1,2] *) [1]
instance Num a => Num [a] where
fromInteger k = [fromInteger k]
(p:ps) + (q:qs) = p + q : ps + qs
ps + qs = ps ++ qs
(p:ps) * qs'@(q:qs) = p * q : ps * qs' + [p] * qs
* = []
-- Reinhard Zumkeller, Apr 02 2011
-
a013609 n k = a013609_tabl !! n !! k
a013609_row n = a013609_tabl !! n
a013609_tabl = iterate (\row -> zipWith (+) ([0] ++ row) $
zipWith (+) ([0] ++ row) (row ++ [0])) [1]
-- Reinhard Zumkeller, Jul 22 2013, Feb 27 2013
-
[2^k*Binomial(n,k): k in [0..n], n in [0..15]]; // G. C. Greubel, Sep 17 2021
-
bin2:=proc(n,k) option remember; if k<0 or k>n then 0 elif k=0 then 1 else 2*bin2(n-1,k-1)+bin2(n-1,k); fi; end; # N. J. A. Sloane, Jun 01 2009
-
Flatten[Table[CoefficientList[(1 + 2*x)^n, x], {n, 0, 10}]][[1 ;; 59]] (* Jean-François Alcover, May 17 2011 *)
BinomialROW[n_, k_, t_] := Sum[Binomial[n, k]*Binomial[k, j]*(-1)^(k - j)*t^j, {j, 0, k}]; Column[Table[BinomialROW[n, k, 3], {n, 0, 10}, {k, 0, n}], Center] (* Kolosov Petro, Jan 28 2019 *)
-
a(n,k):=coeff(expand((1+2*x)^n),x^k);
create_list(a(n,k),n,0,6,k,0,n); /* Emanuele Munarini, Nov 21 2012 */
-
/* same as in A092566 but use */
steps=[[1,0], [1,1], [1,1]]; /* note double [1,1] */
/* Joerg Arndt, Jul 01 2011 */
-
flatten([[2^k*binomial(n,k) for k in (0..n)] for n in (0..15)]) # G. C. Greubel, Sep 17 2021
A128099
Triangle read by rows: T(n,k) is the number of ways to tile a 3 X n rectangle with k pieces of 2 X 2 tiles and 3n-4k pieces of 1 X 1 tiles (0 <= k <= floor(n/2)).
Original entry on oeis.org
1, 1, 1, 2, 1, 4, 1, 6, 4, 1, 8, 12, 1, 10, 24, 8, 1, 12, 40, 32, 1, 14, 60, 80, 16, 1, 16, 84, 160, 80, 1, 18, 112, 280, 240, 32, 1, 20, 144, 448, 560, 192, 1, 22, 180, 672, 1120, 672, 64, 1, 24, 220, 960, 2016, 1792, 448, 1, 26, 264, 1320, 3360, 4032, 1792, 128, 1, 28
Offset: 0
Triangle starts:
1;
1;
1, 2;
1, 4;
1, 6, 4;
1, 8, 12;
1, 10, 24, 8;
1, 12, 40, 32;
- Shara Lalo and Zagros Lalo, Polynomial Expansion Theorems and Number Triangles, Zana Publishing, 2018, ISBN: 978-1-9995914-0-3, pp. 80-83, 357-358
- G. C. Greubel, Table of n, a(n) for the first 100 rows, flattened
- Isabel Cação, Helmuth R. Malonek, Maria Irene Falcão, and Graça Tomaz, Intrinsic Properties of a Non-Symmetric Number Triangle, J. Int. Seq., Vol. 26 (2023), Article 23.4.8.
- Richard Fors, Independence Complexes of Certain Families of Graphs, Master's thesis in Mathematics at KTH, presented Aug 19 2011.
- R. J. Mathar, Tiling n x m rectangles with 1 x 1 and s x s squares arXiv:1609.03964 [math.CO] (2016).
- Zagros Lalo, First layer skew diagonals in center-justified triangle of coefficients in expansion of (1 + 2x)^n
- Zagros Lalo, First layer skew diagonals in center-justified triangle of coefficients in expansion of (2 + x)^n
- Eric Weisstein's World of Mathematics, Jacobsthal Polynomial
-
T := proc(n,k) if k<=n/2 then 2^k*binomial(n-k,k) else 0 fi end: for n from 0 to 16 do seq(T(n,k),k=0..floor(n/2)) od; # yields sequence in triangular form
T := proc(n, k) option remember: if k<0 or k > floor(n/2) then return(0) fi: if k = 0 then return(1) fi: 2*procname(n-2, k-1) + procname(n-1, k): end: seq(seq(T(n, k), k=0..floor(n/2)), n=0..13); # Johannes W. Meijer, Aug 28 2013
-
Table[2^k*Binomial[n - k, k] , {n,0,25}, {k,0,Floor[n/2]}] // Flatten (* G. C. Greubel, Dec 28 2016 *)
t[0, 0] = 1; t[n_, k_] := t[n, k] = If[n < 0 || k < 0, 0, t[n - 1, k] + 2 t[n - 2, k - 1]]; Table[t[n, k], {n, 0, 15}, {k, 0, Floor[n/2]}] // Flatten (* Zagros Lalo, Jul 31 2018 *)
A143453
Square array A(n,k) of numbers of length n ternary words with at least k 0-digits between any other digits (n,k >= 0), read by antidiagonals.
Original entry on oeis.org
1, 1, 3, 1, 3, 9, 1, 3, 5, 27, 1, 3, 5, 11, 81, 1, 3, 5, 7, 21, 243, 1, 3, 5, 7, 13, 43, 729, 1, 3, 5, 7, 9, 23, 85, 2187, 1, 3, 5, 7, 9, 15, 37, 171, 6561, 1, 3, 5, 7, 9, 11, 25, 63, 341, 19683, 1, 3, 5, 7, 9, 11, 17, 39, 109, 683, 59049, 1, 3, 5, 7, 9, 11, 13, 27, 57, 183, 1365, 177147
Offset: 0
A(3,1) = 11, because 11 ternary words of length 3 have at least 1 0-digit between any other digits: 000, 001, 002, 010, 020, 100, 101, 102, 200, 201, 202.
Square array A(n,k) begins:
1, 1, 1, 1, 1, 1, 1, 1, ...
3, 3, 3, 3, 3, 3, 3, 3, ...
9, 5, 5, 5, 5, 5, 5, 5, ...
27, 11, 7, 7, 7, 7, 7, 7, ...
81, 21, 13, 9, 9, 9, 9, 9, ...
243, 43, 23, 15, 11, 11, 11, 11, ...
729, 85, 37, 25, 17, 13, 13, 13, ...
2187, 171, 63, 39, 27, 19, 15, 15, ...
-
A := proc (n::nonnegint, k::nonnegint) option remember; if k=0 then 3^n elif n<=k+1 then 2*n+1 else A(n-1, k) +2*A(n-k-1, k) fi end: seq(seq(A(n,d-n), n=0..d), d=0..14);
-
a[n_, 0] := 3^n; a[n_, k_] /; n <= k+1 := 2*n+1; a[n_, k_] := a[n, k] = a[n-1, k] + 2*a[n-k-1, k]; Table[a[n-k, k], {n, 0, 14}, {k, n, 0, -1}] // Flatten (* Jean-François Alcover, Dec 11 2013 *)
A180676
The Gi3 sums of the Pell-Jacobsthal triangle A013609.
Original entry on oeis.org
1, 1, 1, 1, 17, 337, 6641, 130865, 2578785, 50816737, 1001378849, 19732860833, 388849631729, 7662550168241, 150995835638929, 2975477077435217, 58633827885912001, 1155420016046016193, 22768348266078953793
Offset: 0
-
a:=[1,1,1,1];; for n in [5..30] do a[n]:=20*a[n-1]-6*a[n-2] + 4*a[n-3]-a[n-4]; od; a; # G. C. Greubel, Jun 11 2019
-
R:=PowerSeriesRing(Integers(), 30); Coefficients(R!( (1-19*x-13*x^2-17*x^3)/(1-20*x+6*x^2-4*x^3+x^4) )); // G. C. Greubel, Jun 11 2019
-
nmax:=18: a(0):=1: a(1):=1: a(2):=1: a(3):=1: for n from 4 to nmax do a(n) := 20*a(n-1)-6*a(n-2)+4*a(n-3)-a(n-4) od: seq(a(n),n=0..nmax);
-
LinearRecurrence[{20,-6,4,-1},{1,1,1,1},20] (* Harvey P. Dale, Jun 07 2015 *)
-
my(x='x+O('x^30)); Vec((1-19*x-13*x^2-17*x^3)/(1-20*x+6*x^2-4*x^3 +x^4)) \\ G. C. Greubel, Jun 11 2019
-
((1-19*x-13*x^2-17*x^3)/(1-20*x+6*x^2-4*x^3+x^4)).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, Jun 11 2019
A180677
The Gi4 sums of the Pell-Jacobsthal triangle A013609.
Original entry on oeis.org
1, 3, 15, 87, 503, 2871, 16311, 92599, 525751, 2985399, 16952759, 96267703, 546663863, 3104271799, 17627835831, 100100959671, 568430652855, 3227875241399, 18329726840247, 104086701305271, 591063984860599
Offset: 0
-
a:=[1,3,15,87];; for n in [5..30] do a[n]:=9*a[n-1]-24*a[n-2] +32*a[n-3]-16*a[n-4]; od; a; # G. C. Greubel, Jun 11 2019
-
R:=PowerSeriesRing(Integers(), 30); Coefficients(R!( (1-6*x+ 12*x^2-8*x^3)/(1-9*x+24*x^2-32*x^3+16*x^4) )); // G. C. Greubel, Jun 11 2019
-
nmax:=21: a(0):=1: a(1):=3: a(2):=15: a(3):=87: for n from 4 to nmax do a(n) := 9*a(n-1)-24*a(n-2)+32*a(n-3)-16*a(n-4) od: seq(a(n),n=0..nmax);
-
LinearRecurrence[{9,-24,32,-16}, {1,3,15,87}, 30] (* G. C. Greubel, Jun 11 2019 *)
-
my(x='x+O('x^30)); Vec((1-6*x+12*x^2-8*x^3)/(1-9*x+24*x^2-32*x^3 +16*x^4)) \\ G. C. Greubel, Jun 11 2019
-
((1-6*x+12*x^2-8*x^3)/(1-9*x+24*x^2-32*x^3+16*x^4)).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, Jun 11 2019
A172368
Triangle read by rows: T(n,k) = round(c(n)/(c(k)*c(n-k))) where c is a sequence defined in comments.
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 3, 3, 3, 1, 1, 5, 15, 15, 15, 5, 1, 1, 7, 35, 105, 105, 35, 7, 1, 1, 9, 63, 315, 945, 315, 63, 9, 1, 1, 15, 135, 945, 4725, 4725, 945, 135, 15, 1, 1, 25, 375, 3375, 23625, 39375, 23625, 3375, 375, 25, 1
Offset: 0
Triangle begins as:
1;
1, 1;
1, 1, 1;
1, 1, 1, 1;
1, 1, 1, 1, 1;
1, 3, 3, 3, 3, 1;
1, 5, 15, 15, 15, 5, 1;
1, 7, 35, 105, 105, 35, 7, 1;
1, 9, 63, 315, 945, 315, 63, 9, 1;
1, 15, 135, 945, 4725, 4725, 945, 135, 15, 1;
1, 25, 375, 3375, 23625, 39375, 23625, 3375, 375, 25, 1;
-
f[n_, q_]:= f[n, q]= If[n==0,0,If[n<4, 1, f[n-1, q] + q*f[n-4, q]]];
c[n_, q_]:= Product[f[j, q], {j,n}];
T[n_, k_, q_]:= Round[c[n, q]/(c[k, q]*c[n-k, q])];
Table[T[n, k, 2], {n,0,12}, {k,0,n}]//Flatten (* modified by G. C. Greubel, May 08 2021 *)
-
@CachedFunction
def f(n,q): return 0 if (n==0) else 1 if (n<4) else f(n-1, q) + q*f(n-4, q)
def c(n,q): return product( f(j,q) for j in (1..n) )
def T(n,k,q): return round(c(n, q)/(c(k, q)*c(n-k, q)))
flatten([[T(n,k,2) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, May 08 2021
Definition corrected to give integral terms,
G. C. Greubel, May 08 2021
A193516
T(n,k) = number of ways to place any number of 4X1 tiles of k distinguishable colors into an nX1 grid.
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 3, 3, 1, 1, 1, 4, 5, 4, 1, 1, 1, 5, 7, 7, 5, 1, 1, 1, 6, 9, 10, 9, 7, 1, 1, 1, 7, 11, 13, 13, 15, 10, 1, 1, 1, 8, 13, 16, 17, 25, 25, 14, 1, 1, 1, 9, 15, 19, 21, 37, 46, 39, 19, 1, 1, 1, 10, 17, 22, 25, 51, 73, 76, 57, 26, 1, 1, 1, 11, 19, 25, 29, 67, 106, 125
Offset: 1
Some solutions for n=9 k=3; colors=1, 2, 3; empty=0
..0....3....0....0....3....3....0....0....0....0....2....2....0....0....1....2
..1....3....0....2....3....3....3....0....0....0....2....2....1....0....1....2
..1....3....0....2....3....3....3....2....0....0....2....2....1....0....1....2
..1....3....3....2....3....3....3....2....1....0....2....2....1....0....1....2
..1....0....3....2....0....3....3....2....1....0....2....0....1....0....0....0
..2....3....3....2....0....3....3....2....1....3....2....2....0....0....0....3
..2....3....3....2....0....3....3....0....1....3....2....2....0....0....0....3
..2....3....0....2....0....3....3....0....0....3....2....2....0....0....0....3
..2....3....0....2....0....0....3....0....0....3....0....2....0....0....0....3
-
T:= proc(n, k) option remember;
`if`(n<0, 0,
`if`(n<4 or k=0, 1, k*T(n-4, k) +T(n-1, k)))
end:
seq(seq(T(n, d+1-n), n=1..d), d=1..13); # Alois P. Heinz, Jul 29 2011
-
T[n_, k_] := T[n, k] = If[n < 0, 0, If[n < 4 || k == 0, 1, k*T[n-4, k]+T[n-1, k]]]; Table[Table[T[n, d+1-n], {n, 1, d}], {d, 1, 13}] // Flatten (* Jean-François Alcover, Mar 04 2014, after Alois P. Heinz *)
A242763
a(n) = 1 for n <= 7; a(n) = a(n-5) + a(n-7) for n>7.
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 3, 3, 4, 4, 4, 5, 5, 7, 7, 8, 9, 9, 12, 12, 15, 16, 17, 21, 21, 27, 28, 32, 37, 38, 48, 49, 59, 65, 70, 85, 87, 107, 114, 129, 150, 157, 192, 201, 236, 264, 286, 342, 358, 428, 465, 522, 606, 644, 770, 823, 950, 1071, 1166, 1376
Offset: 1
For n = 13 the a(13) = a(8) + a(6) = 2 + 1 = 3.
- Colin Barker, Table of n, a(n) for n = 1..1000
- Julia Collins, Fibonacci Tree
- Fractal Foundation, Fibonacci Fractals
- D. H. Lehmer, An extended theory of Lucas' functions, Annals of Mathematics, Second Series, Vol. 31, No. 3 (Jul., 1930), pp. 419-448.
- Index entries for linear recurrences with constant coefficients, signature (0,0,0,0,1,0,1).
Cf.
A000079 (i = 0, j = 1, k = 2),
A000244 (i = 0, j = 1, k = 3),
A000302 (i = 0, j = 1, k = 4),
A000351 (i = 0, j = 1, k = 5),
A000400 (i = 0, j = 1, k = 6),
A000420 (i = 0, j = 1, k = 7),
A001018 (i = 0, j = 1, k = 8),
A001019 (i = 0, j = 1, k = 9),
A011557 (i = 0, j = 1, k = 10),
A001020 (i = 0, j = 1, k = 11),
A001021 (i = 0, j = 1, k = 12),
A016116 (i = 0, j = 2, k = 2),
A108411 (i = 0, j = 2, k = 3),
A213173 (i = 0, j = 2, k = 4),
A074872 (i = 0, j = 2, k = 5),
A173862 (i = 0, j = 3, k = 2),
A127975 (i = 0, j = 3, k = 3),
A200675 (i = 0, j = 4, k = 2),
A111575 (i = 0, j = 4, k = 3),
A000045 (i = 1, j = 1, k = 2),
A001045 (i = 1, j = 1, k = 3),
A006130 (i = 1, j = 1, k = 4),
A006131 (i = 1, j = 1, k = 5),
A015440 (i = 1, j = 1, k = 6),
A015441 (i = 1, j = 1, k = 7),
A015442 (i = 1, j = 1, k = 8),
A015443 (i = 1, j = 1, k = 9),
A015445 (i = 1, j = 1, k = 10),
A015446 (i = 1, j = 1, k = 11),
A015447 (i = 1, j = 1, k = 12),
A000931 (i = 1, j = 2, k = 2),
A159284 (i = 1, j = 2, k = 3),
A238389 (i = 1, j = 2, k = 4),
A097041 (i = 1, j = 2, k = 10),
A079398 (i = 1, j = 3, k = 2),
A103372 (i = 1, j = 4, k = 2),
A103373 (i = 1, j = 5, k = 2),
A103374 (i = 1, j = 6, k = 2),
A000930 (i = 2, j = 1, k = 2),
A077949 (i = 2, j = 1, k = 3),
A084386 (i = 2, j = 1, k = 4),
A089977 (i = 2, j = 1, k = 5),
A178205 (i = 2, j = 1, k = 11),
A103609 (i = 2, j = 2, k = 2),
A077953 (i = 2, j = 2, k = 3),
A226503 (i = 2, j = 3, k = 2),
A122521 (i = 2, j = 6, k = 2),
A003269 (i = 3, j = 1, k = 2),
A052942 (i = 3, j = 1, k = 3),
A005686 (i = 3, j = 2, k = 2),
A237714 (i = 3, j = 2, k = 3),
A238391 (i = 3, j = 2, k = 4),
A247049 (i = 3, j = 3, k = 2),
A077886 (i = 3, j = 3, k = 3),
A003520 (i = 4, j = 1, k = 2),
A108104 (i = 4, j = 2, k = 2),
A005708 (i = 5, j = 1, k = 2),
A237716 (i = 5, j = 2, k = 3),
A005709 (i = 6, j = 1, k = 2),
A122522 (i = 6, j = 2, k = 2),
A005710 (i = 7, j = 1, k = 2),
A237718 (i = 7, j = 2, k = 3),
A017903 (i = 8, j = 1, k = 2).
-
[n le 7 select 1 else Self(n-5)+Self(n-7): n in [1..70]]; // Vincenzo Librandi, Nov 30 2016
-
LinearRecurrence[{0, 0, 0, 0, 1, 0, 1}, {1, 1, 1, 1, 1, 1, 1}, 70] (* or *)
CoefficientList[ Series[(1+x+x^2+x^3+x^4)/(1-x^5-x^7), {x, 0, 70}], x] (* Robert G. Wilson v, Nov 25 2016 *)
nxt[{a_,b_,c_,d_,e_,f_,g_}]:={b,c,d,e,f,g,a+c}; NestList[nxt,{1,1,1,1,1,1,1},70][[;;,1]] (* Harvey P. Dale, Oct 22 2024 *)
-
Vec(x*(1+x+x^2+x^3+x^4)/((1-x+x^2)*(1+x-x^3-x^4-x^5)) + O(x^100)) \\ Colin Barker, Oct 27 2016
-
@CachedFunction # a = A242763
def a(n): return 1 if n<8 else a(n-5) +a(n-7)
[a(n) for n in range(1,76)] # G. C. Greubel, Oct 23 2024
A317500
Triangle read by rows: T(0,0) = 1; T(n,k) = T(n-1,k) + 2 * T(n-4,k-1) for k = 0..floor(n/4); T(n,k)=0 for n or k < 0.
Original entry on oeis.org
1, 1, 1, 1, 1, 2, 1, 4, 1, 6, 1, 8, 1, 10, 4, 1, 12, 12, 1, 14, 24, 1, 16, 40, 1, 18, 60, 8, 1, 20, 84, 32, 1, 22, 112, 80, 1, 24, 144, 160, 1, 26, 180, 280, 16, 1, 28, 220, 448, 80, 1, 30, 264, 672, 240, 1, 32, 312, 960, 560, 1, 34, 364, 1320, 1120, 32
Offset: 0
Triangle begins:
1;
1;
1;
1;
1, 2;
1, 4;
1, 6;
1, 8;
1, 10, 4;
1, 12, 12;
1, 14, 24;
1, 16, 40;
1, 18, 60, 8;
1, 20, 84, 32;
1, 22, 112, 80;
1, 24, 144, 160;
1, 26, 180, 280, 16;
1, 28, 220, 448, 80;
1, 30, 264, 672, 240;
...
- Shara Lalo and Zagros Lalo, Polynomial Expansion Theorems and Number Triangles, Zana Publishing, 2018, ISBN: 978-1-9995914-0-3.
-
t[n_, k_] := t[n, k] = 2^k/((n - 4 k)! k!) (n - 3 k)!; Table[t[n, k], {n, 0, 20}, {k, 0, Floor[n/4]} ] // Flatten
t[0, 0] = 1; t[n_, k_] := t[n, k] = If[n < 0 || k < 0, 0, t[n - 1, k] + 2 t[n - 4, k - 1]]; Table[t[n, k], {n, 0, 20}, {k, 0, Floor[n/4]}] // Flatten
Showing 1-9 of 9 results.
Comments