cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A013609 Triangle of coefficients in expansion of (1+2*x)^n.

Original entry on oeis.org

1, 1, 2, 1, 4, 4, 1, 6, 12, 8, 1, 8, 24, 32, 16, 1, 10, 40, 80, 80, 32, 1, 12, 60, 160, 240, 192, 64, 1, 14, 84, 280, 560, 672, 448, 128, 1, 16, 112, 448, 1120, 1792, 1792, 1024, 256, 1, 18, 144, 672, 2016, 4032, 5376, 4608, 2304, 512, 1, 20, 180, 960, 3360, 8064, 13440, 15360, 11520, 5120, 1024
Offset: 0

Views

Author

Keywords

Comments

T(n,k) is the number of lattice paths from (0,0) to (n,k) with steps (1,0) and two kinds of steps (1,1). The number of paths with steps (1,0) and s kinds of steps (1,1) corresponds to the expansion of (1+s*x)^n. - Joerg Arndt, Jul 01 2011
Also sum of rows in A046816. - Lior Manor, Apr 24 2004
Also square array of unsigned coefficients of Chebyshev polynomials of second kind. - Philippe Deléham, Aug 12 2005
The rows give the number of k-simplices in the n-cube. For example, 1, 6, 12, 8 shows that the 3-cube has 1 volume, 6 faces, 12 edges and 8 vertices. - Joshua Zucker, Jun 05 2006
Triangle whose (i, j)-th entry is binomial(i, j)*2^j.
With offset [1,1] the triangle with doubled numbers, 2*a(n,m), enumerates sequences of length m with nonzero integer entries n_i satisfying sum(|n_i|) <= n. Example n=4, m=2: [1,3], [3,1], [2,2] each in 2^2=4 signed versions: 2*a(4,2) = 2*6 = 12. The Sum over m (row sums of 2*a(n,m)) gives 2*3^(n-1), n >= 1. See the W. Lang comment and a K. A. Meissner reference under A024023. - Wolfdieter Lang, Jan 21 2008
n-th row of the triangle = leftmost column of nonzero terms of X^n, where X = an infinite bidiagonal matrix with (1,1,1,...) in the main diagonal and (2,2,2,...) in the subdiagonal. - Gary W. Adamson, Jul 19 2008
Numerators of a matrix square-root of Pascal's triangle A007318, where the denominators for the n-th row are set to 2^n. - Gerald McGarvey, Aug 20 2009
From Johannes W. Meijer, Sep 22 2010: (Start)
The triangle sums (see A180662 for their definitions) link the Pell-Jacobsthal triangle, whose mirror image is A038207, with twenty-four different sequences; see the crossrefs.
This triangle may very well be called the Pell-Jacobsthal triangle in view of the fact that A000129 (Kn21) are the Pell numbers and A001045 (Kn11) the Jacobsthal numbers.
(End)
T(n,k) equals the number of n-length words on {0,1,2} having n-k zeros. - Milan Janjic, Jul 24 2015
T(n-1,k-1) is the number of 2-compositions of n with zeros having k positive parts; see Hopkins & Ouvry reference. - Brian Hopkins, Aug 16 2020
T(n,k) is the number of chains 0=x_0Geoffrey Critzer, Oct 01 2022
Excluding the initial 1, T(n,k) is the number of k-faces of a regular n-cross polytope. See A038207 for n-cube and A135278 for n-simplex. - Mohammed Yaseen, Jan 14 2023

Examples

			Triangle begins:
  1;
  1,  2;
  1,  4,   4;
  1,  6,  12,    8;
  1,  8,  24,   32,   16;
  1, 10,  40,   80,   80,    32;
  1, 12,  60,  160,  240,   192,    64;
  1, 14,  84,  280,  560,   672,   448,    128;
  1, 16, 112,  448, 1120,  1792,  1792,   1024,    256;
  1, 18, 144,  672, 2016,  4032,  5376,   4608,   2304,    512;
  1, 20, 180,  960, 3360,  8064, 13440,  15360,  11520,   5120,  1024;
  1, 22, 220, 1320, 5280, 14784, 29568,  42240,  42240,  28160, 11264,  2048;
  1, 24, 264, 1760, 7920, 25344, 59136, 101376, 126720, 112640, 67584, 24576, 4096;
From _Peter Bala_, Apr 20 2012: (Start)
The triangle can be written as the matrix product A038207*(signed version of A013609).
  |.1................||.1..................|
  |.2...1............||-1...2..............|
  |.4...4...1........||.1..-4...4..........|
  |.8..12...6...1....||-1...6...-12...8....|
  |16..32..24...8...1||.1..-8....24.-32..16|
  |..................||....................|
(End)
		

References

  • B. N. Cyvin et al., Isomer enumeration of unbranched catacondensed polygonal systems with pentagons and heptagons, Match, No. 34 (Oct 1996), pp. 109-121.
  • G. Hotz, Zur Reduktion von Schaltkreispolynomen im Hinblick auf eine Verwendung in Rechenautomaten, El. Datenverarbeitung, Folge 5 (1960), pp. 21-27.

Crossrefs

Cf. A007318, A013610, etc.
Appears in A167580 and A167591. - Johannes W. Meijer, Nov 23 2009
From Johannes W. Meijer, Sep 22 2010: (Start)
Triangle sums (see the comments): A000244 (Row1); A000012 (Row2); A001045 (Kn11); A026644 (Kn12); 4*A011377 (Kn13); A000129 (Kn21); A094706 (Kn22); A099625 (Kn23); A001653 (Kn3); A007583 (Kn4); A046717 (Fi1); A007051 (Fi2); A077949 (Ca1); A008998 (Ca2); A180675 (Ca3); A092467 (Ca4); A052942 (Gi1); A008999 (Gi2); A180676 (Gi3); A180677 (Gi4); A140413 (Ze1); A180678 (Ze2); A097117 (Ze3); A055588 (Ze4).
(End)
T(2n,n) gives A059304.

Programs

  • Haskell
    a013609 n = a013609_list !! n
    a013609_list = concat $ iterate ([1,2] *) [1]
    instance Num a => Num [a] where
       fromInteger k = [fromInteger k]
       (p:ps) + (q:qs) = p + q : ps + qs
       ps + qs         = ps ++ qs
       (p:ps) * qs'@(q:qs) = p * q : ps * qs' + [p] * qs
        *                = []
    -- Reinhard Zumkeller, Apr 02 2011
    
  • Haskell
    a013609 n k = a013609_tabl !! n !! k
    a013609_row n = a013609_tabl !! n
    a013609_tabl = iterate (\row -> zipWith (+) ([0] ++ row) $
                                    zipWith (+) ([0] ++ row) (row ++ [0])) [1]
    -- Reinhard Zumkeller, Jul 22 2013, Feb 27 2013
    
  • Magma
    [2^k*Binomial(n,k): k in [0..n], n in [0..15]]; // G. C. Greubel, Sep 17 2021
    
  • Maple
    bin2:=proc(n,k) option remember; if k<0 or k>n then 0 elif k=0 then 1 else 2*bin2(n-1,k-1)+bin2(n-1,k); fi; end; # N. J. A. Sloane, Jun 01 2009
  • Mathematica
    Flatten[Table[CoefficientList[(1 + 2*x)^n, x], {n, 0, 10}]][[1 ;; 59]] (* Jean-François Alcover, May 17 2011 *)
    BinomialROW[n_, k_, t_] := Sum[Binomial[n, k]*Binomial[k, j]*(-1)^(k - j)*t^j, {j, 0, k}]; Column[Table[BinomialROW[n, k, 3], {n, 0, 10}, {k, 0, n}], Center] (* Kolosov Petro, Jan 28 2019 *)
  • Maxima
    a(n,k):=coeff(expand((1+2*x)^n),x^k);
    create_list(a(n,k),n,0,6,k,0,n); /* Emanuele Munarini, Nov 21 2012 */
    
  • PARI
    /* same as in A092566 but use */
    steps=[[1,0], [1,1], [1,1]]; /* note double [1,1] */
    /* Joerg Arndt, Jul 01 2011 */
    
  • Sage
    flatten([[2^k*binomial(n,k) for k in (0..n)] for n in (0..15)]) # G. C. Greubel, Sep 17 2021

Formula

G.f.: 1 / (1 - x*(1+2*y)).
T(n,k) = 2^k*binomial(n,k).
T(n,k) = 2*T(n-1,k-1) + T(n-1,k). - Jon Perry, Nov 22 2005
Row sums are 3^n = A000244(n). - Joerg Arndt, Jul 01 2011
T(n,k) = Sum_{i=n-k..n} C(i,n-k)*C(n,i). - Mircea Merca, Apr 28 2012
E.g.f.: exp(2*y*x + x). - Geoffrey Critzer, Nov 12 2012
Riordan array (x/(1 - x), 2*x/(1 - x)). Exp(2*x) * e.g.f. for row n = e.g.f. for diagonal n. For example, for n = 3 we have exp(2*x)*(1 + 6*x + 12*x^2/2! + 8*x^3/3!) = 1 + 8*x + 40*x^2/2! + 160*x^3/3! + 560*x^4/4! + .... The same property holds more generally for Riordan arrays of the form (f(x), 2*x/(1 - x)). - Peter Bala, Dec 21 2014
T(n,k) = Sum_{j=0..k} (-1)^(k-j) * binomial(n,k) * binomial(k,j) * 3^j. - Kolosov Petro, Jan 28 2019
T(n,k) = 2*(n+1-k)*T(n,k-1)/k, T(n,0) = 1. - Alexander R. Povolotsky, Oct 08 2023
For n >= 1, GCD(T(n,1), ..., T(n,n)) = GCD(T(n,1),T(n,n)) = GCD(2*n,2^n) = A171977(n). - Pontus von Brömssen, Nov 01 2024

A180677 The Gi4 sums of the Pell-Jacobsthal triangle A013609.

Original entry on oeis.org

1, 3, 15, 87, 503, 2871, 16311, 92599, 525751, 2985399, 16952759, 96267703, 546663863, 3104271799, 17627835831, 100100959671, 568430652855, 3227875241399, 18329726840247, 104086701305271, 591063984860599
Offset: 0

Views

Author

Johannes W. Meijer, Sep 21 2010

Keywords

Comments

The a(n) represent the Gi4 sums of the Pell-Jacobsthal triangle A013609. See A180662 for information about these giraffe and other chess sums.

Crossrefs

Cf. A052942 (Gi1), A008999 (Gi2), A180676 (Gi3), this sequence (Gi4).

Programs

  • GAP
    a:=[1,3,15,87];; for n in [5..30] do a[n]:=9*a[n-1]-24*a[n-2] +32*a[n-3]-16*a[n-4]; od; a; # G. C. Greubel, Jun 11 2019
  • Magma
    R:=PowerSeriesRing(Integers(), 30); Coefficients(R!( (1-6*x+ 12*x^2-8*x^3)/(1-9*x+24*x^2-32*x^3+16*x^4) )); // G. C. Greubel, Jun 11 2019
    
  • Maple
    nmax:=21: a(0):=1: a(1):=3: a(2):=15: a(3):=87: for n from 4 to nmax do a(n) := 9*a(n-1)-24*a(n-2)+32*a(n-3)-16*a(n-4) od: seq(a(n),n=0..nmax);
  • Mathematica
    LinearRecurrence[{9,-24,32,-16}, {1,3,15,87}, 30] (* G. C. Greubel, Jun 11 2019 *)
  • PARI
    my(x='x+O('x^30)); Vec((1-6*x+12*x^2-8*x^3)/(1-9*x+24*x^2-32*x^3 +16*x^4)) \\ G. C. Greubel, Jun 11 2019
    
  • Sage
    ((1-6*x+12*x^2-8*x^3)/(1-9*x+24*x^2-32*x^3+16*x^4)).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, Jun 11 2019
    

Formula

a(n) = 9*a(n-1) - 24*a(n-2) + 32*a(n-3) - 16*a(n-4) with a(0)=1, a(1)=3, a(2)= 15 and a(3)= 87.
a(n) = Sum_{k=0..n} A013609(n+3*k,n-k).
G.f.: (1-6*x+12*x^2-8*x^3)/(1-9*x+24*x^2-32*x^3+16*x^4).
Showing 1-2 of 2 results.