cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A128099 Triangle read by rows: T(n,k) is the number of ways to tile a 3 X n rectangle with k pieces of 2 X 2 tiles and 3n-4k pieces of 1 X 1 tiles (0 <= k <= floor(n/2)).

Original entry on oeis.org

1, 1, 1, 2, 1, 4, 1, 6, 4, 1, 8, 12, 1, 10, 24, 8, 1, 12, 40, 32, 1, 14, 60, 80, 16, 1, 16, 84, 160, 80, 1, 18, 112, 280, 240, 32, 1, 20, 144, 448, 560, 192, 1, 22, 180, 672, 1120, 672, 64, 1, 24, 220, 960, 2016, 1792, 448, 1, 26, 264, 1320, 3360, 4032, 1792, 128, 1, 28
Offset: 0

Views

Author

Emeric Deutsch, Feb 18 2007

Keywords

Comments

Row sums are the Jacobsthal numbers (A001045).
Apparently, T(n,k)/2^n equals the probability P that n will occur as a partial sum in a randomly-generated infinite sequence of 1s and 2s with n compositions (ordered partitions) into (n-2k) 1s and k 2s. Example: T(6,2)=24; P = 3/8 (24/2^6) that 6 will occur as a partial sum in the sequence with 2 (6-2*2) 1s and 2 2s. - Bob Selcoe, Jul 06 2013
From Johannes W. Meijer, Aug 28 2013: (Start)
The antidiagonal sums are A077949 and the backwards antidiagonal sums are A052947.
Moving the terms in each column of this triangle, see the example, upwards to row 0 gives the Pell-Jacobsthal triangle A013609 as a square array. (End)
The numbers in rows of the triangle are along "first layer" skew diagonals pointing top-right in center-justified triangle given in A013609 ((1+2*x)^n) and along (first layer) skew diagonals pointing top-left in center-justified triangle given in A038207 ((2+x)^n), see links. - Zagros Lalo, Jul 31 2018
If s(n) is the row sum at n, then the ratio s(n)/s(n-1) is approximately 2.000..., when n approaches infinity. - Zagros Lalo, Jul 31 2018
It appears that the rows of this array are the coefficients of the Jacobsthal polynomials (see MathWorld link). - Michel Marcus, Jun 15 2019

Examples

			Triangle starts:
  1;
  1;
  1,  2;
  1,  4;
  1,  6,  4;
  1,  8, 12;
  1, 10, 24,  8;
  1, 12, 40, 32;
		

References

  • Shara Lalo and Zagros Lalo, Polynomial Expansion Theorems and Number Triangles, Zana Publishing, 2018, ISBN: 978-1-9995914-0-3, pp. 80-83, 357-358

Crossrefs

Cf. (Triangle sums) A001045, A095977, A077949, A052947, A113726, A052942, A077909.
Cf. (Similar triangles) A008315, A011973, A102541.

Programs

  • Maple
    T := proc(n,k) if k<=n/2 then 2^k*binomial(n-k,k) else 0 fi end: for n from 0 to 16 do seq(T(n,k),k=0..floor(n/2)) od; # yields sequence in triangular form
    T := proc(n, k) option remember: if k<0 or k > floor(n/2) then return(0) fi: if k = 0 then return(1) fi: 2*procname(n-2, k-1) + procname(n-1, k): end: seq(seq(T(n, k), k=0..floor(n/2)), n=0..13); # Johannes W. Meijer, Aug 28 2013
  • Mathematica
    Table[2^k*Binomial[n - k, k] , {n,0,25}, {k,0,Floor[n/2]}] // Flatten  (* G. C. Greubel, Dec 28 2016 *)
    t[0, 0] = 1; t[n_, k_] := t[n, k] = If[n < 0 || k < 0, 0, t[n - 1, k] + 2 t[n - 2, k - 1]]; Table[t[n, k], {n, 0, 15}, {k, 0, Floor[n/2]}] // Flatten (* Zagros Lalo, Jul 31 2018 *)

Formula

T(n, k) = 2^k*binomial(n-k,k) = 2^k*A011973(n,k).
G.f.: 1/(1-z-2*t*z^2).
Sum_{k=0..floor(n/2)} k*T(n,k) = A095977(n-1).
From Johannes W. Meijer, Aug 28 2013: (Start)
T(n, k) = 2*T(n-2, k-1) + T(n-1, k) with T(n, 0) = 1 and T(n, k) = 0 for k < 0 and k > floor(n/2).
T(n, k) = A013609(n-k, k), n >= 0 and 0 <= k <= floor(n/2). (End)

A234312 Number of tilings of a 5 X n rectangle using n pentominoes of shapes L, X.

Original entry on oeis.org

1, 0, 2, 0, 4, 2, 8, 8, 16, 24, 36, 64, 88, 160, 224, 392, 576, 960, 1472, 2368, 3728, 5888, 9376, 14720, 23488, 36896, 58752, 92544, 146944, 232064, 367680, 581632, 920448, 1457152, 2305024, 3649664, 5773312, 9140224, 14460928, 22890496, 36221184, 57327616
Offset: 0

Views

Author

Alois P. Heinz, Dec 23 2013

Keywords

Examples

			a(4) = 4:
._______.  ._______.  ._______.  ._______.
|_. |_. |  | ._| ._|  |_. | ._|  | ._|_. |
| | | | |  | | | | |  | | | | |  | | | | |
| | | | |  | | | | |  | | | | |  | | | | |
| |_| |_|  |_| |_| |  | |_|_| |  |_| | |_|
|___|___|  |___|___|  |___|___|  |___|___|.
a(5) = 2:
._________.  ._________.
| | ._____|  |_____. | |
| |_| |_. |  | ._| |_| |
| |_. ._| |  | |_. ._| |
|___|_| | |  | | |_|___|
|_______|_|  |_|_______|.
		

Crossrefs

Programs

  • Maple
    a:= n-> (<<0|1|0|0|0>, <0|0|1|0|0>, <0|0|0|1|0>,
              <0|0|0|0|1>, <2|0|0|2|0>>^n)[5, 5]:
    seq(a(n), n=0..50);
  • Mathematica
    LinearRecurrence[{0, 2, 0, 0, 2}, {1, 0, 2, 0, 4}, 50] (* Jean-François Alcover, May 28 2019 *)

Formula

G.f.: -1/(2*x^5+2*x^2-1).
a(n) = 2*(a(n-2)+a(n-5)) for n>4, a(1)=a(3)=0, a(0)=1, a(2)=2, a(4)=4.

A247126 Number of tilings of a 5 X n rectangle using n pentominoes of shapes F, U, X, N.

Original entry on oeis.org

1, 0, 0, 1, 2, 0, 1, 4, 4, 1, 14, 12, 17, 32, 64, 81, 138, 272, 489, 764, 1548, 2809, 5062, 9420, 17721, 32712, 60992, 114105, 213890, 398784, 747745, 1401476, 2624004, 4916369, 9218118, 17274340, 32378521, 60694768, 113785984, 213293721, 399856922, 749628208
Offset: 0

Views

Author

Alois P. Heinz, Nov 19 2014

Keywords

Crossrefs

Programs

  • Maple
    gf:= -(x+1) *(4*x^19 -4*x^18 +8*x^17 -4*x^16 +12*x^15 -12*x^14 +9*x^13 -5*x^12 -2*x^10 +5*x^9 -6*x^8 +10*x^7 -10*x^6 +8*x^5 -7*x^4 +4*x^3 -3*x^2 +3*x-1) / (4*x^23 +8*x^22 +12*x^21 +32*x^20 +8*x^19 +6*x^18 -15*x^17 -22*x^16 -9*x^15 -9*x^14 +13*x^13 +4*x^12 +22*x^11 -15*x^10 +x^9 -9*x^8 -x^7 +3*x^6 +3*x^5 +3*x^4 -2*x^3 -2*x+1):
    a:= n-> coeff(series(gf, x, n+1), x, n):
    seq(a(n), n=0..50);

Formula

G.f.: see Maple program.

A077976 Expansion of 1/(1+x+x^2+2*x^3).

Original entry on oeis.org

1, -1, 0, -1, 3, -2, 1, -5, 8, -5, 7, -18, 21, -17, 32, -57, 59, -66, 121, -173, 184, -253, 415, -530, 621, -921, 1360, -1681, 2163, -3202, 4401, -5525, 7528, -10805, 14327, -18578, 25861, -35937, 47232, -63017, 87659, -119106, 157481, -213693, 294424, -395693, 528655, -721810, 984541, -1320041
Offset: 0

Views

Author

N. J. A. Sloane, Nov 17 2002

Keywords

Crossrefs

Partial sums give: A077909.

Programs

  • GAP
    a:=[1,-1,0];; for n in [4..50] do a[n]:=-a[n-1]-a[n-2]-2*a[n-3]; od; a; # G. C. Greubel, Jun 25 2019
  • Magma
    R:=PowerSeriesRing(Integers(), 50); Coefficients(R!( 1/(1+x+x^2+2*x^3) )); // G. C. Greubel, Jun 25 2019
    
  • Mathematica
    LinearRecurrence[{-1, -1, -2}, {1, -1, 0}, 50] (* Vladimir Joseph Stephan Orlovsky, Feb 24 2012 *)
  • PARI
    my(x='x+O('x^50)); Vec(1/(1+x+x^2+2*x^3)) \\ G. C. Greubel, Jun 25 2019
    
  • Sage
    (1/(1+x+x^2+2*x^3)).series(x, 50).coefficients(x, sparse=False) # G. C. Greubel, Jun 25 2019
    
Showing 1-4 of 4 results.