cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A303872 Triangle read by rows: T(0,0) = 1; T(n,k) = -T(n-1,k) + 2 T(n-1,k-1) for k = 0,1,...,n; T(n,k)=0 for n or k < 0.

Original entry on oeis.org

1, -1, 2, 1, -4, 4, -1, 6, -12, 8, 1, -8, 24, -32, 16, -1, 10, -40, 80, -80, 32, 1, -12, 60, -160, 240, -192, 64, -1, 14, -84, 280, -560, 672, -448, 128, 1, -16, 112, -448, 1120, -1792, 1792, -1024, 256, -1, 18, -144, 672, -2016, 4032, -5376, 4608, -2304, 512
Offset: 0

Views

Author

Shara Lalo, May 25 2018

Keywords

Comments

Row n gives coefficients in expansion of (-1+2x)^n. Row sums=1.
In the center-justified triangle, the numbers in skew diagonals pointing top-Left give the triangle in A133156 (coefficients of Chebyshev polynomials of the second kind), and the numbers in skew diagonals pointing top-right give the triangle in A305098. The coefficients in the expansion of 1/(1-x) are given by the sequence generated by the row sums. The generating function of the central terms is 1/sqrt(1+8x), signed version of A059304.

Examples

			Triangle begins:
   1;
  -1,   2;
   1,  -4,   4;
  -1,   6, -12,    8;
   1,  -8,  24,  -32,   16;
  -1,  10, -40,   80,  -80,    32;
   1, -12,  60, -160,  240,  -192,   64;
  -1,  14, -84,  280, -560,   672, -448,   128;
   1, -16, 112, -448, 1120, -1792, 1792, -1024, 256;
		

References

  • Shara Lalo and Zagros Lalo, Polynomial Expansion Theorems and Number Triangles, Zana Publishing, 2018, ISBN: 978-1-9995914-0-3, pp. 389-391.

Crossrefs

Row sums give A000012.
Signed version of A013609 ((1+2*x)^n).
Cf. A033999 (column 0).

Programs

  • Mathematica
    T[0, 0] = 1; T[n_, k_] := If[n < 0 || k < 0, 0, - T[n - 1, k] + 2 T[n - 1, k - 1]]; Table[T[n, k], {n, 0, 9}, {k, 0, n}] // Flatten
    For[i = 0, i < 4, i++, Print[CoefficientList[Expand[(-1 +2 x)^i], x]]]
  • PARI
    T(n, k) = if ((n<0) || (k<0), 0, if ((n==0) && (k==0), 1, -T(n-1, k) + 2*T(n-1, k-1)));
    tabl(nn) = for (n=0, nn, for (k=0, n, print1(T(n,k), ", ")); print); \\ Michel Marcus, May 26 2018

Formula

G.f.: 1 / (1 + t - 2t*x).
T(n,k) = (-1)^(n+k)*2^k*binomial(n,k). - Stefano Spezia, Aug 08 2025

A317506 Triangle read by rows: T(0,0) = 1; T(n,k) = 2 T(n-1,k) - T(n-4,k-1) for 0 <= k <= floor(n/4); T(n,k)=0 for n or k < 0.

Original entry on oeis.org

1, 2, 4, 8, 16, -1, 32, -4, 64, -12, 128, -32, 256, -80, 1, 512, -192, 6, 1024, -448, 24, 2048, -1024, 80, 4096, -2304, 240, -1, 8192, -5120, 672, -8, 16384, -11264, 1792, -40, 32768, -24576, 4608, -160, 65536, -53248, 11520, -560, 1, 131072, -114688, 28160, -1792, 10
Offset: 0

Views

Author

Shara Lalo, Aug 31 2018

Keywords

Comments

The numbers in rows of the triangle are along "third layer" skew diagonals pointing top-right in center-justified triangle given in A065109 ((2-x)^n) and along "third layer" skew diagonals pointing top-left in center-justified triangle given in A303872 ((-1+2x)^n), see links. (Note: First layer skew diagonals in center-justified triangles of coefficients in expansions of (2-x)^n and (-1+2x)^n are given in A133156 (coefficients of Chebyshev polynomials of the second kind) and A305098 respectively.) The coefficients in the expansion of 1/(1-2x+x^4) are given by the sequence generated by the row sums. The row sums give A008937. If s(n) is the row sum at n, then the ratio s(n)/s(n-1) is approximately 1.83928675521416113... (A058265: Decimal expansion of the tribonacci constant t, the real root of x^3-x^2-x-1), when n approaches infinity.

Examples

			Triangle begins:
       1;
       2;
       4;
       8;
      16,      -1;
      32,      -4;
      64,     -12;
     128,     -32;
     256,     -80,     1;
     512,    -192,     6;
    1024,    -448,    24;
    2048,   -1024,    80;
    4096,   -2304,   240,    -1;
    8192,   -5120,   672,    -8;
   16384,  -11264,  1792,   -40;
   32768,  -24576,  4608,  -160;
   65536,  -53248, 11520,  -560,  1;
  131072, -114688, 28160, -1792, 10;
  262144, -245760, 67584, -5376, 60;
		

References

  • Shara Lalo and Zagros Lalo, Polynomial Expansion Theorems and Number Triangles, Zana Publishing, 2018, ISBN: 978-1-9995914-0-3.

Crossrefs

Row sums give A008937.
Cf. A058265.

Programs

  • Mathematica
    t[n_, k_] := t[n, k] = 2^(n - 4 k) * (-1)^k/((n - 4 k)! k!) * (n - 3 k)!; Table[t[n, k], {n, 0, 16}, {k, 0, Floor[n/4]} ]  // Flatten
    t[0, 0] = 1; t[n_, k_] := t[n, k] = If[n < 0 || k < 0, 0, 2 * t[n - 1, k] - t[n - 4, k - 1]]; Table[t[n, k], {n, 0, 16}, {k, 0, Floor[n/4]}] // Flatten

Formula

T(n,k) = 2^(n - 4*k) * (-1)^k / ((n - 4*k)! k!) * (n - 3*k)! where n >= 0 and 0 <= k <= floor(n/4).

A317504 Triangle read by rows: T(0,0) = 1; T(n,k) = 2 T(n-1,k) - T(n-3,k-1) for k = 0..floor(n/3); T(n,k)=0 for n or k < 0.

Original entry on oeis.org

1, 2, 4, 8, -1, 16, -4, 32, -12, 64, -32, 1, 128, -80, 6, 256, -192, 24, 512, -448, 80, -1, 1024, -1024, 240, -8, 2048, -2304, 672, -40, 4096, -5120, 1792, -160, 1, 8192, -11264, 4608, -560, 10, 16384, -24576, 11520, -1792, 60, 32768, -53248, 28160, -5376, 280, -1, 65536, -114688, 67584, -15360, 1120, -12
Offset: 0

Views

Author

Shara Lalo, Aug 02 2018

Keywords

Comments

The numbers in rows of the triangle are along "second layer" skew diagonals pointing top-right in center-justified triangle given in A065109 ((2-x)^n) and along "second layer" skew diagonals pointing top-left in center-justified triangle given in A303872 ((-1+2x)^n), see links. (Note: First layer skew diagonals in center-justified triangles of coefficients in expansions of (2-x)^n and (-1+2x)^n are given in A133156 (coefficients of Chebyshev polynomials of the second kind) and A305098 respectively.) The coefficients in the expansion of 1/(1-2x+x^3) are given by the sequence generated by the row sums. The row sums give A000071 (Fibonacci numbers - 1). If s(n) is the row sum at n, then the ratio s(n)/s(n-1) is approximately 1.61803398874989484... (A001622: Decimal expansion of Golden ratio (phi or tau) = (1 + sqrt(5))/2), when n approaches infinity.

Examples

			Triangle begins:
       1;
       2;
       4;
       8,      -1;
      16,      -4;
      32,     -12;
      64,     -32,      1;
     128,     -80,      6;
     256,    -192,     24;
     512,    -448,     80,      -1;
    1024,   -1024,    240,      -8;
    2048,   -2304,    672,     -40;
    4096,   -5120,   1792,    -160,     1;
    8192,  -11264,   4608,    -560,    10;
   16384,  -24576,  11520,   -1792,    60;
   32768,  -53248,  28160,   -5376,   280,   -1;
   65536, -114688,  67584,  -15360,  1120,  -12;
  131072, -245760, 159744,  -42240,  4032,  -84;
  262144, -524288, 372736, -112640, 13440, -448, 1;
		

References

  • Shara Lalo and Zagros Lalo, Polynomial Expansion Theorems and Number Triangles, Zana Publishing, 2018, ISBN: 978-1-9995914-0-3, pp. 139-141, 391-393.

Crossrefs

Row sums give A000071.
Cf. A001622.

Programs

  • Mathematica
    t[n_, k_] := t[n, k] = 2^(n - 3k) * (-1)^k/((n - 3 k)! k!) * (n - 2 k)!; Table[t[n, k], {n, 0, 16}, {k, 0, Floor[n/3]} ]  // Flatten
    t[0, 0] = 1; t[n_, k_] := t[n, k] = If[n < 0 || k < 0, 0, 2 * t[n - 1, k] - t[n - 3, k - 1]]; Table[t[n, k], {n, 0, 16}, {k, 0, Floor[n/3]}] // Flatten

Formula

T(n,k) = 2^(n - 3k) * (-2)^k / ((n - 3k)! k!) * (n - 2k)! where n is a nonnegative integer and k = 0..floor(n/3).

A317505 Triangle read by rows: T(0,0) = 1; T(n,k) = - T(n-1,k) - 2 T(n-3,k-1) for k = 0..floor(n/3); T(n,k)=0 for n or k < 0.

Original entry on oeis.org

1, -1, 1, -1, 2, 1, -4, -1, 6, 1, -8, 4, -1, 10, -12, 1, -12, 24, -1, 14, -40, 8, 1, -16, 60, -32, -1, 18, -84, 80, 1, -20, 112, -160, 16, -1, 22, -144, 280, -80, 1, -24, 180, -448, 240, -1, 26, -220, 672, -560, 32, 1, -28, 264, -960, 1120, -192, -1, 30, -312, 1320, -2016, 672, 1, -32, 364, -1760, 3360, -1792, 64, -1, 34, -420, 2288, -5280, 4032, -448
Offset: 0

Views

Author

Shara Lalo, Aug 02 2018

Keywords

Comments

The numbers in rows of the triangle are along "second layer" skew diagonals pointing top-left in center-justified triangle given in A065109 ((2-x)^n) and along "second layer" skew diagonals pointing top-right in center-justified triangle given in A303872 ((-1+2x)^n), see links. (Note: First layer skew diagonals in center-justified triangles of coefficients in expansions of (2-x)^n and (-1+2x)^n are given in A133156 (coefficients of Chebyshev polynomials of the second kind) and A305098 respectively.) The coefficients in the expansion of 1/(1+x+2x^3) are given by the sequence generated by the row sums (see A077973).

Examples

			Triangle begins:
   1;
  -1;
   1;
  -1,   2;
   1,  -4;
  -1,   6;
   1,  -8,    4;
  -1,  10,  -12;
   1, -12,   24;
  -1,  14,  -40,     8;
   1, -16,   60,   -32;
  -1,  18,  -84,    80;
   1, -20,  112,  -160,    16;
  -1,  22, -144,   280,   -80;
   1, -24,  180,  -448,   240;
  -1,  26, -220,   672,  -560,    32;
   1, -28,  264,  -960,  1120,  -192;
  -1,  30, -312,  1320, -2016,   672;
   1, -32,  364, -1760,  3360, -1792,   64;
  -1,  34, -420,  2288, -5280,  4032, -448;
		

References

  • Shara Lalo and Zagros Lalo, Polynomial Expansion Theorems and Number Triangles, Zana Publishing, 2018, ISBN: 978-1-9995914-0-3, pp. 139-141, 391-393.

Crossrefs

Row sums give A077973.

Programs

  • Mathematica
    t[n_, k_] := t[n, k] = (-1)^(n - 3k) * 2^k/((n - 3 k)! k!) * (n - 2 k)!; Table[t[n, k], {n, 0, 19}, {k, 0, Floor[n/3]} ]  // Flatten
    t[0, 0] = 1; t[n_, k_] := t[n, k] = If[n < 0 || k < 0, 0, - t[n - 1, k] + 2 t[n - 3, k - 1]]; Table[t[n, k], {n, 0, 19}, {k, 0, Floor[n/3]}] // Flatten

Formula

T(n,k) = (-1)^(n - 3k) * 2^k / ((n - 3k)! k!) * (n - 2k)! where n is a nonnegative integer and k = 0..floor(n/3).
Showing 1-4 of 4 results.