A305098
Triangle read by rows: T(0,0) = 1; T(n,k) = -T(n-1,k) + 2 T(n-2,k-1) for k = 0..floor(n/2); T(n,k)=0 for n or k < 0.
Original entry on oeis.org
1, -1, 1, 2, -1, -4, 1, 6, 4, -1, -8, -12, 1, 10, 24, 8, -1, -12, -40, -32, 1, 14, 60, 80, 16, -1, -16, -84, -160, -80, 1, 18, 112, 280, 240, 32, -1, -20, -144, -448, -560, -192, 1, 22, 180, 672, 1120, 672, 64, -1, -24, -220, -960, -2016, -1792, -448
Offset: 0
Triangle begins:
1;
-1;
1, 2;
-1, -4;
1, 6, 4;
-1, -8, -12;
1, 10, 24, 8;
-1, -12, -40, -32;
1, 14, 60, 80, 16;
-1, -16, -84, -160, -80;
1, 18, 112, 280, 240, 32;
-1, -20, -144, -448, -560, -192;
1, 22, 180, 672, 1120, 672, 64;
-1, -24, -220, -960, -2016, -1792, -448;
1, 26, 264, 1320, 3360, 4032, 1792, 128;
-1, -28, -312, -1760, -5280, -8064, -5376, -1024;
1, 30, 364, 2288, 7920, 14784, 13440, 4608, 256;
-1, -32, -420, -2912, -11440, -25344, -29568, -15360, -2304;
- Shara Lalo and Zagros Lalo, Polynomial Expansion Theorems and Number Triangles, Zana Publishing, 2018, ISBN: 978-1-9995914-0-3, pp. 389-391.
-
t[0, 0] = 1; t[n_, k_] := If[n < 0 || k < 0, 0, -t[n - 1, k] + 2 t[n - 2, k - 1]]; Table[t[n, k], {n, 0, 13}, {k, 0, Floor[n/2]}] // Flatten
-
T(n, k) = if ((n<0) || (k<0), 0, if ((n==0) && (k==0), 1, -T(n-1, k) + 2*T(n-2, k-1)));
tabf(nn) = for (n=0, nn, for (k=0, n\2, print1(T(n,k), ", ")); print); \\ Michel Marcus, May 26 2018
A317506
Triangle read by rows: T(0,0) = 1; T(n,k) = 2 T(n-1,k) - T(n-4,k-1) for 0 <= k <= floor(n/4); T(n,k)=0 for n or k < 0.
Original entry on oeis.org
1, 2, 4, 8, 16, -1, 32, -4, 64, -12, 128, -32, 256, -80, 1, 512, -192, 6, 1024, -448, 24, 2048, -1024, 80, 4096, -2304, 240, -1, 8192, -5120, 672, -8, 16384, -11264, 1792, -40, 32768, -24576, 4608, -160, 65536, -53248, 11520, -560, 1, 131072, -114688, 28160, -1792, 10
Offset: 0
Triangle begins:
1;
2;
4;
8;
16, -1;
32, -4;
64, -12;
128, -32;
256, -80, 1;
512, -192, 6;
1024, -448, 24;
2048, -1024, 80;
4096, -2304, 240, -1;
8192, -5120, 672, -8;
16384, -11264, 1792, -40;
32768, -24576, 4608, -160;
65536, -53248, 11520, -560, 1;
131072, -114688, 28160, -1792, 10;
262144, -245760, 67584, -5376, 60;
- Shara Lalo and Zagros Lalo, Polynomial Expansion Theorems and Number Triangles, Zana Publishing, 2018, ISBN: 978-1-9995914-0-3.
-
t[n_, k_] := t[n, k] = 2^(n - 4 k) * (-1)^k/((n - 4 k)! k!) * (n - 3 k)!; Table[t[n, k], {n, 0, 16}, {k, 0, Floor[n/4]} ] // Flatten
t[0, 0] = 1; t[n_, k_] := t[n, k] = If[n < 0 || k < 0, 0, 2 * t[n - 1, k] - t[n - 4, k - 1]]; Table[t[n, k], {n, 0, 16}, {k, 0, Floor[n/4]}] // Flatten
A317504
Triangle read by rows: T(0,0) = 1; T(n,k) = 2 T(n-1,k) - T(n-3,k-1) for k = 0..floor(n/3); T(n,k)=0 for n or k < 0.
Original entry on oeis.org
1, 2, 4, 8, -1, 16, -4, 32, -12, 64, -32, 1, 128, -80, 6, 256, -192, 24, 512, -448, 80, -1, 1024, -1024, 240, -8, 2048, -2304, 672, -40, 4096, -5120, 1792, -160, 1, 8192, -11264, 4608, -560, 10, 16384, -24576, 11520, -1792, 60, 32768, -53248, 28160, -5376, 280, -1, 65536, -114688, 67584, -15360, 1120, -12
Offset: 0
Triangle begins:
1;
2;
4;
8, -1;
16, -4;
32, -12;
64, -32, 1;
128, -80, 6;
256, -192, 24;
512, -448, 80, -1;
1024, -1024, 240, -8;
2048, -2304, 672, -40;
4096, -5120, 1792, -160, 1;
8192, -11264, 4608, -560, 10;
16384, -24576, 11520, -1792, 60;
32768, -53248, 28160, -5376, 280, -1;
65536, -114688, 67584, -15360, 1120, -12;
131072, -245760, 159744, -42240, 4032, -84;
262144, -524288, 372736, -112640, 13440, -448, 1;
- Shara Lalo and Zagros Lalo, Polynomial Expansion Theorems and Number Triangles, Zana Publishing, 2018, ISBN: 978-1-9995914-0-3, pp. 139-141, 391-393.
-
t[n_, k_] := t[n, k] = 2^(n - 3k) * (-1)^k/((n - 3 k)! k!) * (n - 2 k)!; Table[t[n, k], {n, 0, 16}, {k, 0, Floor[n/3]} ] // Flatten
t[0, 0] = 1; t[n_, k_] := t[n, k] = If[n < 0 || k < 0, 0, 2 * t[n - 1, k] - t[n - 3, k - 1]]; Table[t[n, k], {n, 0, 16}, {k, 0, Floor[n/3]}] // Flatten
A317505
Triangle read by rows: T(0,0) = 1; T(n,k) = - T(n-1,k) - 2 T(n-3,k-1) for k = 0..floor(n/3); T(n,k)=0 for n or k < 0.
Original entry on oeis.org
1, -1, 1, -1, 2, 1, -4, -1, 6, 1, -8, 4, -1, 10, -12, 1, -12, 24, -1, 14, -40, 8, 1, -16, 60, -32, -1, 18, -84, 80, 1, -20, 112, -160, 16, -1, 22, -144, 280, -80, 1, -24, 180, -448, 240, -1, 26, -220, 672, -560, 32, 1, -28, 264, -960, 1120, -192, -1, 30, -312, 1320, -2016, 672, 1, -32, 364, -1760, 3360, -1792, 64, -1, 34, -420, 2288, -5280, 4032, -448
Offset: 0
Triangle begins:
1;
-1;
1;
-1, 2;
1, -4;
-1, 6;
1, -8, 4;
-1, 10, -12;
1, -12, 24;
-1, 14, -40, 8;
1, -16, 60, -32;
-1, 18, -84, 80;
1, -20, 112, -160, 16;
-1, 22, -144, 280, -80;
1, -24, 180, -448, 240;
-1, 26, -220, 672, -560, 32;
1, -28, 264, -960, 1120, -192;
-1, 30, -312, 1320, -2016, 672;
1, -32, 364, -1760, 3360, -1792, 64;
-1, 34, -420, 2288, -5280, 4032, -448;
- Shara Lalo and Zagros Lalo, Polynomial Expansion Theorems and Number Triangles, Zana Publishing, 2018, ISBN: 978-1-9995914-0-3, pp. 139-141, 391-393.
-
t[n_, k_] := t[n, k] = (-1)^(n - 3k) * 2^k/((n - 3 k)! k!) * (n - 2 k)!; Table[t[n, k], {n, 0, 19}, {k, 0, Floor[n/3]} ] // Flatten
t[0, 0] = 1; t[n_, k_] := t[n, k] = If[n < 0 || k < 0, 0, - t[n - 1, k] + 2 t[n - 3, k - 1]]; Table[t[n, k], {n, 0, 19}, {k, 0, Floor[n/3]}] // Flatten
A317509
Coefficients in expansion of 1/(1 + x - 2*x^5).
Original entry on oeis.org
1, -1, 1, -1, 1, 1, -3, 5, -7, 9, -7, 1, 9, -23, 41, -55, 57, -39, -7, 89, -199, 313, -391, 377, -199, -199, 825, -1607, 2361, -2759, 2361, -711, -2503, 7225, -12743, 17465, -18887, 13881, 569, -26055, 60985, -98759, 126521
Offset: 0
- Shara Lalo and Zagros Lalo, Polynomial Expansion Theorems and Number Triangles, Zana Publishing, 2018, ISBN: 978-1-9995914-0-3.
-
CoefficientList[Series[1/(1 + x - 2 x^5), {x, 0, 42}], x]
a[0] = 1; a[n_] := a[n] = If[n < 0, 0, - a[n - 1] + 2 * a[n - 5]]; Table[a[n], {n, 0, 42}] // Flatten
LinearRecurrence[{-1,0,0,0,2}, {1,-1,1,-1,1}, 43]
-
my(x='x+O('x^99)); Vec(1/(1+x-2*x^5)) \\ Altug Alkan, Sep 04 2018
Showing 1-5 of 5 results.
Comments