cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A003273 Congruent numbers: positive integers k for which there exists a right triangle having area k and rational sides.

Original entry on oeis.org

5, 6, 7, 13, 14, 15, 20, 21, 22, 23, 24, 28, 29, 30, 31, 34, 37, 38, 39, 41, 45, 46, 47, 52, 53, 54, 55, 56, 60, 61, 62, 63, 65, 69, 70, 71, 77, 78, 79, 80, 84, 85, 86, 87, 88, 92, 93, 94, 95, 96, 101, 102, 103, 109, 110, 111, 112, 116, 117, 118, 119, 120, 124, 125, 126
Offset: 1

Views

Author

Keywords

Comments

Positive integers k such that x^2 + k*y^2 = z^2 and x^2 - k*y^2 = t^2 have simultaneous integer solutions. In other words, k is the difference of an arithmetic progression of three rational squares: (t/y)^2, (x/y)^2, (z/y)^2. Values of k corresponding to y=1 (i.e., an arithmetic progression of three integer squares) form A256418.
Tunnell shows that if a number is squarefree and congruent, then the ratio of the number of solutions of a pair of equations is 2. If the Birch and Swinnerton-Dyer conjecture is assumed, then determining whether a squarefree number k is congruent requires counting the solutions to a pair of equations. For odd k, see A072068 and A072069; for even k see A072070 and A072071.
If a number k is congruent, there are an infinite number of right triangles having rational sides and area k. All congruent numbers can be obtained by multiplying a primitive congruent number A006991 by a positive square number A000290.
Conjectured asymptotics (based on random matrix theory) on p. 453 of Cohen's book. - Steven Finch, Apr 23 2009

Examples

			24 is congruent because 24 is the area of the right triangle with sides 6,8,10.
5 is congruent because 5 is the area of the right triangle with sides 3/2, 20/3, 41/6 (although not of any right triangle with integer sides -- see A073120). - _Jonathan Sondow_, Oct 04 2013
		

References

  • Alter, Ronald; Curtz, Thaddeus B.; Kubota, K. K. Remarks and results on congruent numbers. Proceedings of the Third Southeastern Conference on Combinatorics, Graph Theory and Computing (Florida Atlantic Univ., Boca Raton, Fla., 1972), pp. 27-35. Florida Atlantic Univ., Boca Raton, Fla., 1972. MR0349554 (50 #2047)
  • H. Cohen, Number Theory. I, Tools and Diophantine Equations, Springer-Verlag, 2007, p. 454. [From Steven Finch, Apr 23 2009]
  • R. Cuculière, "Mille ans de chasse aux nombres congruents", in Pour la Science (French edition of 'Scientific American'), No. 7, 1987, pp. 14-18.
  • L. E. Dickson, History of the Theory of Numbers, Vol. 2, pp. 459-472, AMS Chelsea Pub. Providence RI 1999.
  • R. K. Guy, Unsolved Problems in Number Theory, D27.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Mathematica
    (* The following Mathematica code assumes the truth of the Birch and Swinnerton-Dyer conjecture and uses the list of primitive congruent numbers produced by the Mathematica code in A006991: *)
    For[cLst={}; i=1, i<=Length[lst], i++, n=lst[[i]]; j=1; While[n j^2<=maxN, cLst=Union[cLst, {n j^2}]; j++ ]]; cLst

Extensions

Guy gives a table up to 1000.
Edited by T. D. Noe, Jun 14 2002
Comments revised by Max Alekseyev, Nov 15 2008
Comment corrected by Jonathan Sondow, Oct 10 2013