A003273 Congruent numbers: positive integers k for which there exists a right triangle having area k and rational sides.
5, 6, 7, 13, 14, 15, 20, 21, 22, 23, 24, 28, 29, 30, 31, 34, 37, 38, 39, 41, 45, 46, 47, 52, 53, 54, 55, 56, 60, 61, 62, 63, 65, 69, 70, 71, 77, 78, 79, 80, 84, 85, 86, 87, 88, 92, 93, 94, 95, 96, 101, 102, 103, 109, 110, 111, 112, 116, 117, 118, 119, 120, 124, 125, 126
Offset: 1
Examples
24 is congruent because 24 is the area of the right triangle with sides 6,8,10. 5 is congruent because 5 is the area of the right triangle with sides 3/2, 20/3, 41/6 (although not of any right triangle with integer sides -- see A073120). - _Jonathan Sondow_, Oct 04 2013
References
- Alter, Ronald; Curtz, Thaddeus B.; Kubota, K. K. Remarks and results on congruent numbers. Proceedings of the Third Southeastern Conference on Combinatorics, Graph Theory and Computing (Florida Atlantic Univ., Boca Raton, Fla., 1972), pp. 27-35. Florida Atlantic Univ., Boca Raton, Fla., 1972. MR0349554 (50 #2047)
- H. Cohen, Number Theory. I, Tools and Diophantine Equations, Springer-Verlag, 2007, p. 454. [From Steven Finch, Apr 23 2009]
- R. Cuculière, "Mille ans de chasse aux nombres congruents", in Pour la Science (French edition of 'Scientific American'), No. 7, 1987, pp. 14-18.
- L. E. Dickson, History of the Theory of Numbers, Vol. 2, pp. 459-472, AMS Chelsea Pub. Providence RI 1999.
- R. K. Guy, Unsolved Problems in Number Theory, D27.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- T. D. Noe, Congruent numbers up to 10000; table of n, a(n) for n = 1..5742
- R. Alter, Letter to N. J. A. Sloane, Sep 1975
- R. Alter, The congruent number problem, Amer. Math. Monthly, 87 (1980), 43-45.
- R. Alter and T. B. Curtz, A note on congruent numbers, Math. Comp., 28 (1974), 303-305 and 30 (1976), 198.
- A. Alvarado and E. H. Goins, Arithmetic progressions on conic sections, arXiv:1210.6612 [math.NT], 2012. [From _Jonathan Sondow_, Oct 25 2012]
- Estelle Basor and Bill Hart, A trillion triangles, American Institute of Mathematics,
- E. Brown, Three Fermat Trails to Elliptic Curves, 5. Congruent Numbers and Elliptic Curves (pp 8-11/17)
- Graeme Brown, The Congruent Number Problem, 2014.
- Jasbir S. Chahal, Some remarks on rational right triangles, Expos. Math. (2024).
- B. Cipra, Tallying the class of congruent numbers, ScienceNOW, Sep 23 2009.
- Clay Mathematics Institute, The Birch and Swinnerton-Dyer Conjecture
- Raiza Corpuz, Constructing congruent number elliptic curves using 2-descent, arXiv:2006.08113 [math.NT], 2020.
- R. Cuculière, Mille ans de chasse aux nombres congruents, Séminaire de Philosophie et Mathématiques, 2, 1988, p. 1-17.
- Department of Pure Maths., Univ. Sheffield, Pythagorean triples and the congruent number problem [Cached copy]
- A. Dujella, A. S.Janfeda, and S. Salami, A Search for High Rank Congruent Number Elliptic Curves, JIS 12 (2009) 09.5.8.
- E. V. Eikenberg, The Congruent Number Problem
- David Goldberg, Triangle Sides for Congruent Numbers less than 10000, arXiv:2106.07373 [math.NT], 2021.
- Lorenz Halbeisen and Norbert Hungerbühler, Congruent number elliptic curves with rank at least two, arXiv:1809.02037 [math.NT], 2018.
- Lorenz Halbeisen and Norbert Hungerbühler, Congruent Number Elliptic Curves Related to Integral Solutions of m^2 = n^2 + nl + n^2, J. Int. Seq., Vol. 22 (2019), Article 19.3.1.
- Alvaro Lozano-Robledo, My #MegaFavNumber: 224,403,517,704,336,969,924,557,513,090,674,863,160,948,472,041, video (2020) [discusses congruent numbers and a(157)]
- W. F. Hammond, A Reading of Karl Rubin's SUMO Slides on Rational Right Triangles and Elliptic Curves
- Bill Hart, A Trillion Triangles, American Institute of Mathematics.
- T. Komatsu, Congruent numbers and continued fractions, Fib. Quart., 50 (2012), 222-226. - From _N. J. A. Sloane_, Mar 04 2013
- S. Komoto, T. Watanabe and H. Wada, 42553 is a congruent number.
- G. Kramarz, All congruent numbers less than 2000, Math. Annalen, 273 (1986), 337-340.
- G. Kramarz, All congruent numbers less than 2000, Math. Annalen, 273 (1986), 337-340. [Annotated, corrected, scanned copy]
- Allan J. MacLeod, The congruent number descent of Komotu, Watanabe and Wada, arXiv:2005.02615 [math.NT], 2020.
- MathDL, Five Mathematicians Capture Record Number of Congruent Numbers
- Fidel Ronquillo Nemenzo, All congruent numbers less than 40000, Proc. Japan Acad. Ser. A Math. Sci., Volume 74, Number 1 (1998), 29-31.
- Karl Rubin, Right triangles and elliptic curves
- W. A. Stein, Introduction to the Congruent Number Problem
- W. A. Stein, The Congruent Number Problem
- Ye Tian, Congruent Numbers and Heegner Points, arXiv:1210.8231 [math.NT], 2012.
- J. B. Tunnell, A classical Diophantine problem and modular forms of weight 3/2, Invent. Math., 72 (1983), 323-334.
- D. J. Wright, The Congruent Number Problem
Crossrefs
Programs
-
Mathematica
(* The following Mathematica code assumes the truth of the Birch and Swinnerton-Dyer conjecture and uses the list of primitive congruent numbers produced by the Mathematica code in A006991: *) For[cLst={}; i=1, i<=Length[lst], i++, n=lst[[i]]; j=1; While[n j^2<=maxN, cLst=Union[cLst, {n j^2}]; j++ ]]; cLst
Extensions
Guy gives a table up to 1000.
Edited by T. D. Noe, Jun 14 2002
Comments revised by Max Alekseyev, Nov 15 2008
Comment corrected by Jonathan Sondow, Oct 10 2013
Comments