A003409 a(n) = 3*binomial(2n-1,n).
3, 9, 30, 105, 378, 1386, 5148, 19305, 72930, 277134, 1058148, 4056234, 15600900, 60174900, 232676280, 901620585, 3500409330, 13612702950, 53017895700, 206769793230, 807386811660, 3156148445580, 12350146091400, 48371405524650, 189615909656628, 743877799422156
Offset: 1
References
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- T. D. Noe, Table of n, a(n) for n = 1..200
- C. Domb and A. J. Barrett, Enumeration of ladder graphs, Discrete Math. 9 (1974), 341-358.
- C. Domb & A. J. Barrett, Enumeration of ladder graphs, Discrete Math. 9 (1974), 341-358. (Annotated scanned copy)
- C. Domb & A. J. Barrett, Notes on Table 2 in "Enumeration of ladder graphs", Discrete Math. 9 (1974), 55. (Annotated scanned copy)
Crossrefs
Equals 3 * A001700.
Programs
-
Maple
a := n -> (3/2)*4^n*GAMMA(1/2+n)/(sqrt(Pi)*GAMMA(1+n)): seq(a(n), n=1..26); # Peter Luschny, Dec 14 2015
-
Mathematica
Table[3*Binomial[2*n - 1, n], {n, 20}] (* T. D. Noe, Oct 07 2013 *)
-
PARI
a(n) = 3*binomial(2*n-1,n) \\ Charles R Greathouse IV, Oct 23 2023
Formula
a(n) = (3/2)*4^n*Gamma(1/2+n)/(sqrt(Pi)*Gamma(1+n)). - Peter Luschny, Dec 14 2015
From Stefano Spezia, Jul 05 2021: (Start)
O.g.f.: 6*x/((1 - sqrt(1 - 4*x))*sqrt(1 - 4*x)) - 3.
E.g.f.: 3*(exp(2*x)*I_0(2*x) - 1)/2, where I_n(x) is the modified Bessel function of the first kind.
a(n) ~ 3*4^n/(2*sqrt(n*Pi)). (End)
D-finite with recurrence n*a(n) +2*(-2*n+1)*a(n-1)=0. - R. J. Mathar, Jul 22 2025
Extensions
More terms from Jon E. Schoenfield, Mar 26 2010
Comments