cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A003409 a(n) = 3*binomial(2n-1,n).

Original entry on oeis.org

3, 9, 30, 105, 378, 1386, 5148, 19305, 72930, 277134, 1058148, 4056234, 15600900, 60174900, 232676280, 901620585, 3500409330, 13612702950, 53017895700, 206769793230, 807386811660, 3156148445580, 12350146091400, 48371405524650, 189615909656628, 743877799422156
Offset: 1

Views

Author

Keywords

Comments

a(n) is the number of ways to tile a bracelet of length 3*n with n squares and n dominos, or in other words, the number of ways to have exactly n pairings on the cycle graph C_(3*n). - Greg Dresden and Zhengyu Zhang, Aug 15 2025

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Equals 3 * A001700.

Programs

  • Maple
    a := n -> (3/2)*4^n*GAMMA(1/2+n)/(sqrt(Pi)*GAMMA(1+n)):
    seq(a(n), n=1..26); # Peter Luschny, Dec 14 2015
  • Mathematica
    Table[3*Binomial[2*n - 1, n], {n, 20}] (* T. D. Noe, Oct 07 2013 *)
  • PARI
    a(n) = 3*binomial(2*n-1,n) \\ Charles R Greathouse IV, Oct 23 2023

Formula

a(n) = (3/2)*4^n*Gamma(1/2+n)/(sqrt(Pi)*Gamma(1+n)). - Peter Luschny, Dec 14 2015
From Stefano Spezia, Jul 05 2021: (Start)
O.g.f.: 6*x/((1 - sqrt(1 - 4*x))*sqrt(1 - 4*x)) - 3.
E.g.f.: 3*(exp(2*x)*I_0(2*x) - 1)/2, where I_n(x) is the modified Bessel function of the first kind.
a(n) ~ 3*4^n/(2*sqrt(n*Pi)). (End)
D-finite with recurrence n*a(n) +2*(-2*n+1)*a(n-1)=0. - R. J. Mathar, Jul 22 2025

Extensions

More terms from Jon E. Schoenfield, Mar 26 2010