cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A029651 Central elements of the (1,2)-Pascal triangle A029635.

Original entry on oeis.org

1, 3, 9, 30, 105, 378, 1386, 5148, 19305, 72930, 277134, 1058148, 4056234, 15600900, 60174900, 232676280, 901620585, 3500409330, 13612702950, 53017895700, 206769793230, 807386811660, 3156148445580, 12350146091400, 48371405524650
Offset: 0

Views

Author

Keywords

Comments

If Y is a fixed 2-subset of a (2n+1)-set X then a(n) is the number of (n+1)-subsets of X intersecting Y. - Milan Janjic, Oct 28 2007

References

  • V. N. Smith and L. Shapiro, Catalan numbers, Pascal's triangle and mutators, Congressus Numerant., 205 (2010), 187-197.

Crossrefs

Essentially a duplicate of A003409.

Programs

  • Maple
    a := n -> (3/2)*4^n*GAMMA(1/2+n)/(sqrt(Pi)*GAMMA(1+n))-0^n/2;
    seq(simplify(a(n)), n=0..24); # Peter Luschny, Dec 16 2015
  • Mathematica
    Join[{1},Table[3*Binomial[2n-1,n],{n,30}]] (* Harvey P. Dale, Aug 11 2015 *)
  • PARI
    concat([1], for(n=1, 50, print1(3*binomial(2*n-1,n), ", "))) \\ G. C. Greubel, Jan 23 2017

Formula

a(n) = 3 * binomial(2n-1, n) (n>0). - Len Smiley, Nov 03 2001
a(n) = 3*A001700(n-1), (n>=1).
G.f.: (1+xC(x))/(1-2xC(x)), C(x) the g.f. of A000108. - Paul Barry, Dec 17 2004
a(n) = A003409(n), n>0. - R. J. Mathar, Oct 23 2008
a(n) = Sum_{k=0..n} A039599(n,k)*A000034(k). - Philippe Deléham, Oct 29 2008
a(n) = (3/2)*4^n*Gamma(1/2+n)/(sqrt(Pi)*Gamma(1+n))-0^n/2. - Peter Luschny, Dec 16 2015
a(n) ~ (3/2)*4^n*(1-(1/8)/n+(1/128)/n^2+(5/1024)/n^3-(21/32768)/n^4)/sqrt(n*Pi). - Peter Luschny, Dec 16 2015
a(n) = 2^(1-n)*Sum_{k=0..n} binomial(k+n,k)*binomial(2*n-1,n-k), n>0, a(0)=1. - Vladimir Kruchinin, Nov 23 2016
E.g.f.: (3*exp(2*x)*BesselI(0,2*x) - 1)/2. - Ilya Gutkovskiy, Nov 23 2016
a(n) = A143398(2n,n) = A145460(2n,n). - Alois P. Heinz, Sep 09 2018
a(n) = [x^n] C(-x)^(-3*n), where C(x) = (1 - sqrt(1 - 4*x))/(2*x) is the g.f. of the Catalan numbers A000108. - Peter Bala, Oct 16 2024

Extensions

More terms from David W. Wilson

A200777 T(n,k)=Number of nXk 0..2 arrays with every row and column running average nondecreasing rightwards and downwards, and the number of instances of each value within one of each other.

Original entry on oeis.org

3, 3, 3, 2, 5, 2, 7, 5, 5, 7, 9, 20, 13, 20, 9, 6, 37, 31, 31, 37, 6, 22, 31, 77, 342, 77, 31, 22, 30, 144, 217, 1368, 1368, 217, 144, 30, 20, 273, 553, 1806, 7725, 1806, 553, 273, 20, 75, 218, 1438, 18801, 13422, 13422, 18801, 1438, 218, 75, 105, 1054, 3849, 66784, 194535
Offset: 1

Views

Author

R. H. Hardin Nov 22 2011

Keywords

Comments

Table starts
..3....3....2......7........9.........6..........22...........30............20
..3....5....5.....20.......37........31.........144..........273...........218
..2....5...13.....31.......77.......217.........553.........1438..........3849
..7...20...31....342.....1368......1806.......18801........66784.........80772
..9...37...77...1368.....7725.....13422......194535.......980702.......1678693
..6...31..217...1806....13422.....91755......633413......4472626......30905995
.22..144..553..18801...194535....633413....17965438....171117355.....537341613
.30..273.1438..66784...980702...4472626...171117355...2189118202....9237040535
.20..218.3849..80772..1678693..30905995...537341613...9237040535..159001066390
.75.1054.9634.855668.24878620.209517906.14614583388.342978784324.2722231659577

Examples

			Some solutions for n=6 k=4
..0..0..0..0....0..0..1..1....0..0..0..0....0..0..0..0....0..0..0..0
..0..1..2..1....0..0..1..2....0..1..2..1....0..0..2..2....0..0..2..1
..0..2..1..2....0..0..1..2....0..1..2..1....0..0..1..1....0..1..2..1
..0..1..1..2....0..1..1..2....0..1..2..1....1..1..1..2....0..1..2..2
..0..1..2..2....0..2..1..2....0..2..2..2....1..1..2..2....1..1..2..2
..1..1..2..2....1..2..2..2....1..1..2..2....1..2..2..2....1..1..2..2
		

Crossrefs

Column 1 includes A003409((n+1)/3) and A000984(n/3)

A200770 Number of nX1 0..2 arrays with every row and column running average nondecreasing rightwards and downwards, and the number of instances of each value within one of each other.

Original entry on oeis.org

3, 3, 2, 7, 9, 6, 22, 30, 20, 75, 105, 70, 266, 378, 252, 966, 1386, 924, 3564, 5148, 3432, 13299, 19305, 12870, 50050, 72930, 48620, 189618, 277134, 184756, 722228, 1058148, 705432, 2762942, 4056234, 2704156, 10608612, 15600900, 10400600, 40859500
Offset: 1

Views

Author

R. H. Hardin Nov 22 2011

Keywords

Comments

Column 1 of A200777

Examples

			All solutions for n=4
..0....0....0....0....0....0....0
..0....2....0....1....1....1....2
..1....1....2....2....2....1....1
..2....2....1....2....1....2....1
		

Crossrefs

Includes A003409((n+1)/3) and A000984(n/3)

Formula

Conjecture: (n+2)*(2270*n-4893)*a(n) +3*(1090*n^2-4919*n+1654)*a(n-1) +4686*a(n-2) +2*(-5540*n^2+7016*n+17127)*a(n-3) -6*(1090*n-2739)*(2*n-7)*a(n-4)=0. - R. J. Mathar, Nov 23 2011

A370487 Number of partitions of [3n] into 3 sets of size n having at least one set of consecutive numbers whose maximum (if n>0) is a multiple of n.

Original entry on oeis.org

1, 1, 7, 28, 103, 376, 1384, 5146, 19303, 72928, 277132, 1058146, 4056232, 15600898, 60174898, 232676278, 901620583, 3500409328, 13612702948, 53017895698, 206769793228, 807386811658, 3156148445578, 12350146091398, 48371405524648, 189615909656626, 743877799422154
Offset: 0

Views

Author

Alois P. Heinz, Feb 19 2024

Keywords

Examples

			a(0) = 1: {}|{}|{}.
a(1) = 1: 1|2|3.
a(2) = 7: 12|34|56, 12|35|46, 12|36|45, 13|24|56, 14|23|56, 15|26|34, 16|25|34.
		

Crossrefs

Programs

  • Maple
    a:= n-> `if`(n=0, 1, 3*binomial(2*n-1,n)-2):
    seq(a(n), n=0..27);
    # second Maple program:
    a:= proc(n) option remember; `if`(n<3, 3*n*(n-1)+1, ((15*n^2
          -31*n+12)*a(n-1)-(3*n-2)*(4*n-6)*a(n-2))/((3*n-5)*n))
        end:
    seq(a(n), n=0..27);

Formula

a(n) = 3*binomial(2*n-1,n) - 2 for n >= 1, a(0) = 1.
G.f.: ((3*x+1)*(4*x-1)+3*(1-x)*sqrt(1-4*x))/(2*(1-x)*(1-4*x)).
a(n) = A003409(n) - 2 = A029651(n) - 2 = 3*A001700(n-1) - 2 for n >= 1.
a(n) mod 2 = A255738(n+1).
a(n) mod 2 = 1 <=> n in { A131577 }.

A334456 Number h of points and of blocks of nontrivial biplanes.

Original entry on oeis.org

7, 11, 16, 37, 56, 79, 121
Offset: 1

Views

Author

Stefano Spezia, Apr 30 2020

Keywords

Comments

A biplane is an incidence structure consisting of a set P of h points and a set of h blocks, each of which is a k-subset of P (block size k), such that every pair of points lies in exactly 2 blocks (see Alavi et al.).

Crossrefs

A334457 Block sizes k of nontrivial biplanes.

Original entry on oeis.org

4, 5, 6, 9, 11, 13, 16
Offset: 1

Views

Author

Stefano Spezia, Apr 30 2020

Keywords

Comments

A biplane is an incidence structure consisting of a set P of h points and a set of h blocks, each of which is an k-subset of P (block size k), such that every pair of points lies in exactly 2 blocks (see Alavi et al.).

Crossrefs

A128727 Triangle read by rows: T(n,k) is the number of skew Dyck paths of semilength n having k DDU and LDU's.

Original entry on oeis.org

1, 1, 3, 9, 1, 27, 9, 81, 54, 2, 243, 270, 30, 729, 1215, 270, 5, 2187, 5103, 1890, 105, 6561, 20412, 11340, 1260, 14, 19683, 78732, 61236, 11340, 378, 59049, 295245, 306180, 85050, 5670, 42, 177147, 1082565, 1443420, 561330, 62370, 1386, 531441
Offset: 0

Views

Author

Emeric Deutsch, Mar 31 2007

Keywords

Comments

A skew Dyck path is a path in the first quadrant which begins at the origin, ends on the x-axis, consists of steps U=(1,1)(up), D=(1,-1)(down) and L=(-1,-1)(left) so that up and left steps do not overlap. The length of a path is defined to be the number of steps in it.
Row n has ceiling(n/2) terms (n >= 1).
Row sums yield A002212.
Apparently a(n) = A126177(n-1). - Georg Fischer, Oct 28 2018

Examples

			T(5,2)=2 because we have UU(DDU)U(DDU)D and UUU(DDU)(DDU)D (the 2 subwords are shown between parentheses).
Triangle starts:
    1;
    1;
    3;
    9,    1;
   27,    9;
   81,   54,    2;
  243,  270,   30;
  729, 1215,  270,    5;
		

Crossrefs

Programs

  • Maple
    T:=(n,k)->3^(n-1-2*k)*binomial(n,k)*binomial(n-k,k+1)/n: 1; for n from 1 to 13 do seq(T(n,k),k=0..floor((n-1)/2)) od; # yields sequence in triangular form

Formula

T(n,0) = 3^(n-1).
T(2k+1,k) = binomial(2k,k)/(k+1) (the Catalan numbers, A000108).
T(2k,k-1) = 3binomial(2k-1,k) = A003409(k).
Sum_{k>=0} k*T(n,k) = A026377(n-1).
T(n,k) = (1/n)*3^(n-1-2k)*binomial(n,k)*binomial(n-k,k+1).
G.f.: G = G(t,z) satisfies tzG^2 - (1 - 3z + 2tz)G + 1 - 2z + tz = 0.
Showing 1-7 of 7 results.