cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A003487 a(n) = a(n-1)^2 - 2, with a(0) = 5.

Original entry on oeis.org

5, 23, 527, 277727, 77132286527, 5949389624883225721727, 35395236908668169265765137996816180039862527, 1252822795820745419377249396736955608088527968701950139470082687906021780162741058825727
Offset: 0

Views

Author

Keywords

Comments

The next term has 175 digits. - Harvey P. Dale, Feb 19 2015

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A001566 (starting with 3), A003010 (starting with 4), A003423 (starting with 6). A001601, A145504.

Programs

  • Maple
    a:= n-> simplify(2*ChebyshevT(2^n, 1/2*5), 'ChebyshevT'):
    seq(a(n), n=0..7);
  • Mathematica
    NestList[#^2-2&,5,10] (* Harvey P. Dale, Feb 19 2015 *)
    a[ n_] := If[ n < 0, 0, 2 ChebyshevT[2^n, 5/2]]; (* Michael Somos, Dec 06 2016 *)
  • PARI
    {a(n) = if( n<0, 0, polchebyshev(2^n, 1, 5/2) * 2)}; /* Michael Somos, Dec 06 2016 */

Formula

a(n) = ceiling(c^(2^n)) where c=(5+sqrt(21))/2 is the largest root of x^2-5x+1=0. - Benoit Cloitre, Dec 03 2002
a(n) = 2*T(2^n,5/2) where T(n,x) is the Chebyshev polynomial of the first kind. - Leonid Bedratyuk, Mar 17 2011
Engel expansion of 1/2*(5 - sqrt(21)). Thus 1/2*(5 - sqrt(21)) = 1/5 + 1/(5*23) + 1/(5*23*527) + .... See Liardet and Stambul. Cf. A001566, A003010 and A003423. - Peter Bala, Oct 31 2012
From Peter Bala, Nov 11 2012: (Start)
a(n) = ((5 + sqrt(21))/2)^(2^n) + ((5 - sqrt(21))/2)^(2^n).
sqrt(21)/6 = Product_{n = 0..oo} (1 - 1/a(n)).
sqrt(7/3) = Product_{n = 0..oo} (1 + 2/a(n)).
a(n) - 1 = A145504(n+1). (End)
a(n) = A003501(2^n). - Michael Somos, Dec 06 2016
From Peter Bala, Dec 06 2022: (Start)
a(n) = 2 + 3*Product_{k = 0 ..n-1} (a(k) + 2) for n >= 1.
Let b(n) = a(n) - 5. The sequence {b(n)} appears to be a strong divisibility sequence, that is, gcd(b(n),b(m)) = b(gcd(n,m)) for n, m >= 1. (End)

Extensions

One more term from Harvey P. Dale, Feb 19 2015