cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A003504 a(0)=a(1)=1; thereafter a(n+1) = (1/n)*Sum_{k=0..n} a(k)^2 (a(n) is not always integral!).

Original entry on oeis.org

1, 1, 2, 3, 5, 10, 28, 154, 3520, 1551880, 267593772160, 7160642690122633501504, 4661345794146064133843098964919305264116096, 1810678717716933442325741630275004084414865420898591223522682022447438928019172629856
Offset: 0

Views

Author

Keywords

Comments

The sequence appears with a different offset in some other sources. - Michael Somos, Apr 02 2006
Also known as Göbel's (or Goebel's) Sequence. Asymptotically, a(n) ~ n*C^(2^n) where C=1.0478... (A115632). A more precise asymptotic formula is given in A116603. - M. F. Hasler, Dec 12 2007
Let s(n) = (n-1)*a(n). By considering the p-adic representation of s(n) for primes p=2,3,...,43, one finds that a(44) is the first nonintegral value in this sequence. Furthermore, for n>44, the valuation of s(n) w.r.t. 43 is -2^(n-44), implying that both s(n) and a(n) are nonintegral. - M. F. Hasler and Max Alekseyev, Mar 03 2009
a(44) is approximately 5.4093*10^178485291567. - Hans Havermann, Nov 14 2017.
The fractional part is simply 24/43 (see page 709 of Guy (1988)).
The more precise asymptotic formula is a(n+1) ~ C^(2^n) * (n + 2 - 1/n + 4/n^2 - 21/n^3 + 138/n^4 - 1091/n^5 + ...). - Michael Somos, Mar 17 2012

Examples

			a(3) = (1 * 2 + 2^2) / 2 = 3 given a(2) = 2.
		

References

  • R. K. Guy, Unsolved Problems in Number Theory, 3rd edition, Sect. E15.
  • Clifford Pickover, A Passion for Mathematics, 2005.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A005166, A005167, A097398, A108394, A115632, A116603 (asymptotic formula).

Programs

  • Maple
    a:=2: L:=1,1,a: n:=15: for k to n-2 do a:=a*(a+k)/(k+1): L:=L,a od:L; # Robert FERREOL, Nov 07 2015
  • Mathematica
    a[n_] := a[n] = Sum[a[k]^2, {k, 0, n-1}]/(n-1); a[0] = a[1] = 1; Table[a[n], {n, 0, 13}] (* Jean-François Alcover, Feb 06 2013 *)
    With[{n = 14}, Nest[Append[#, (#.#)/(Length[#] - 1)] &, {1, 1}, n - 2]] (* Jan Mangaldan, Mar 21 2013 *)
  • PARI
    A003504(n,s=2)=if(n-->0,for(k=1,n-1,s+=(s/k)^2);s/n,1) \\ M. F. Hasler, Dec 12 2007
    
  • Python
    a=2; L=[1,1,a]; n=15
    for k in range(1,n-1):
        a=a*(a+k)//(k+1)
        L.append(a)
    print(L) # Robert FERREOL, Nov 07 2015

Formula

a(n+1) = ((n-1) * a(n) + a(n)^2) / n if n > 1. - Michael Somos, Apr 02 2006
0 = a(n)*(+a(n)*(a(n+1) - a(n+2)) - a(n+1) - a(n+1)^2) +a(n+1)*(a(n+1)^2 - a(n+2)) if n>1. - Michael Somos, Jul 25 2016

Extensions

a(0)..a(43) are integral, but from a(44) onwards every term is nonintegral - H. W. Lenstra, Jr.
Corrected and extended by M. F. Hasler, Dec 12 2007
Further corrections from Max Alekseyev, Mar 04 2009