cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A245027 Divisors of 7^12 - 1.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 8, 9, 10, 12, 13, 15, 16, 18, 19, 20, 24, 25, 26, 30, 32, 36, 38, 39, 40, 43, 45, 48, 50, 52, 57, 60, 65, 72, 75, 76, 78, 80, 86, 90, 95, 96, 100, 104, 114, 117, 120, 129, 130, 144, 150, 152, 156, 160, 171, 172, 180, 181, 190, 195, 200, 208
Offset: 1

Views

Author

Bruno Berselli, Jul 10 2014

Keywords

Comments

Number of divisors of k^12-1 for k = 2..20: 24 (2), 80 (3), 96 (4), 240 (5), 128 (6), 864 (7), 512 (8), 384 (9), 256 (10), 1920 (11), 256 (12), 960 (13), 384 (14), 448 (15), 768 (16), 1792 (17), 768 (18), 3840 (19), 384 (20).
The following triangular numbers belong to this sequence: 1, 3, 6, 10, 15, 36, 45, 78, 120, 171, 190, 300, 325, 741, 780, 2080, 2850, 4560, 8385, 14706, 16290, 5915080, 1730160900.

Examples

			13841287200 = 2^5 * 3^2 * 5^2 * 13 * 19 * 43 * 181.
		

Crossrefs

Cf. Divisors of k^12-1: A003524 (k=2); A003532 (k=4); A003543 (k=8), A027902 (k=9), A027897 (k=10), A245028 (k=11).

Programs

  • Magma
    Divisors(7^12-1);
    
  • Mathematica
    Divisors[7^12 - 1]
  • Maxima
    divisors(7^12-1);
  • PARI
    divisors(7^12-1)
    
  • Sage
    divisors(7^12-1)
    

A245028 Divisors of 11^12 - 1.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 14, 15, 16, 18, 19, 20, 21, 24, 26, 28, 30, 35, 36, 37, 38, 39, 40, 42, 45, 48, 52, 56, 57, 60, 61, 63, 65, 70, 72, 74, 76, 78, 80, 84, 90, 91, 95, 104, 105, 111, 112, 114, 117, 120, 122, 126, 130, 133, 140, 144, 148, 152
Offset: 1

Views

Author

Bruno Berselli, Jul 10 2014

Keywords

Comments

See Comments section in A245027.
The following 36 triangular numbers belong to this sequence: 1, 3, 6, 10, 15, 21, 28, 36, 45, 78, 91, 105, 120, 171, 190, 210, 630, 666, 703, 741, 780, 1596, 1830, 4095, 4560, 5460, 6216, 16653, 33670, 46360, 103740, 115440, 221445, 274170, 365085, 392303547090.
The following terms of A001082 (without 1, 21 and 120, which appear in the previous list) are in sequence: 5, 8, 16, 40, 56, 65, 133, 208, 280, 456, 481, 560, 936, 1008, 1281, 1365, 1680, 1776, 1976, 4880, 5985, 10920, 11285, 44408, 47880, 590520, 658008, 731120, 973560, 1046142792240.
Also, 4/5 of the members are divisible by 3 and 2/3 of them are even.

Examples

			3138428376720 = 2^4 * 3^2 * 5 * 7 * 13 * 19 * 37 * 61 * 1117.
		

Crossrefs

Cf. Divisors of k^12-1: A003524 (k=2); A003532 (k=4); A245027 (k=7), A003543 (k=8), A027902 (k=9), A027897 (k=10).

Programs

  • Magma
    Divisors(11^12-1);
    
  • Mathematica
    Divisors[11^12 - 1]
  • Maxima
    divisors(11^12-1);
  • PARI
    divisors(11^12-1)
    
  • Sage
    divisors(11^12-1)
    

A334133 Numbers k > 2 such that gpf(A111076(k)^lambda(k) - 1) = gpf(lambda(k) + 1); where gpf is the greatest prime factor (A006530), and lambda = A002322 is the Carmichael function.

Original entry on oeis.org

3, 5, 6, 9, 10, 12, 13, 15, 16, 20, 21, 24, 30, 35, 39, 40, 45, 60, 63, 65, 80, 91, 105, 117, 120, 195, 240, 273, 315, 455, 585, 819, 1365, 4095
Offset: 1

Views

Author

Thomas Ordowski, Apr 15 2020

Keywords

Comments

Prime numbers in this sequence are 3, 5, and 13. These are primes p with primitive root 2 (A001122) such that gpf(2^(p-1)-1) = p.
The set of all numbers of this sequence is probably also finite and complete (all terms are on the list).
The odd terms of this sequence up to 4095 = 2^12-1 are exactly the divisors of this number (A003524) except 1 and 7. [Edited by M. F. Hasler, Apr 17 2020]
Conjecture: all odd terms {3, 5, 9, 13, 15, 21, 35, 39, 45, 63, 65, 91, 105, 117, 195, 273, 315, 455, 585, 819, 1365, 4095} are odd numbers k such that gpf(2^m-1) = gpf(m+1), where m = A002326((k-1)/2) is the multiplicative order of 2 mod 2k+1. - Amiram Eldar, Apr 15 2020
No further terms below 10^5. - M. F. Hasler, Apr 17 2020

Crossrefs

Programs

  • Mathematica
    gpf[n_] := FactorInteger[n][[-1, 1]]; gpfQ[n_, p_] := Module[{ps = Select[Range[p], PrimeQ], np, m, k}, np = Length[ps]; m = n; If[Divisible[n, p], Do[m /= (ps[[k]]^IntegerExponent[m, ps[[k]]]), {k, 1, np}]; m == 1, False]]; f[n_] := Module[{k = 1, lam = CarmichaelLambda[n]}, While[! CoprimeQ[n, k] || MultiplicativeOrder[k, n] != lam, k++]; k]; Select[Range[2, 2^12], gpfQ[f[#]^(c = CarmichaelLambda[#]) - 1, gpf[c + 1]] &] (* Amiram Eldar, Apr 15 2020 *)
  • PARI
    select( is_A334133(n)={n>2||return; my(o=lcm(znstar(n)[2]),k=1); while(gcd(k++,n)>1 || znorder(Mod(k,n))M. F. Hasler, Apr 17 2020

Extensions

More terms from Amiram Eldar, Apr 15 2020
Showing 1-3 of 3 results.