cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A003596 Numbers of the form 2^i * 11^j.

Original entry on oeis.org

1, 2, 4, 8, 11, 16, 22, 32, 44, 64, 88, 121, 128, 176, 242, 256, 352, 484, 512, 704, 968, 1024, 1331, 1408, 1936, 2048, 2662, 2816, 3872, 4096, 5324, 5632, 7744, 8192, 10648, 11264, 14641, 15488, 16384, 21296, 22528, 29282, 30976, 32768
Offset: 1

Views

Author

Keywords

Comments

A204455(11*a(n)) = 11, and only for these numbers. - Wolfdieter Lang, Feb 04 2012

Crossrefs

Programs

  • GAP
    Filtered([1..33000],n->PowerMod(22,n,n)=0); # Muniru A Asiru, Mar 19 2019
    
  • Haskell
    import Data.Set (singleton, deleteFindMin, insert)
    a003596 n = a003596_list !! (n-1)
    a003596_list = f $ singleton (1,0,0) where
       f s = y : f (insert (2 * y, i + 1, j) $ insert (11 * y, i, j + 1) s')
             where ((y, i, j), s') = deleteFindMin s
    -- Reinhard Zumkeller, May 15 2015
    
  • Magma
    [n: n in [1..2*10^5] | PrimeDivisors(n) subset [2, 11]]; // Vincenzo Librandi, Jun 27 2016
    
  • Mathematica
    fQ[n_] := PowerMod[22,n,n]==0; Select[Range[40000], fQ] (* Vincenzo Librandi, Feb 04 2012 *)
  • PARI
    list(lim)=my(v=List(),N);for(n=0,log(lim)\log(11),N=11^n;while(N<=lim,listput(v,N);N<<=1));vecsort(Vec(v)) \\ Charles R Greathouse IV, Jun 28 2011
    
  • Python
    from sympy import integer_log
    def A003596(n):
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            kmin = kmax >> 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        def f(x): return n+x-sum((x//11**i).bit_length() for i in range(integer_log(x,11)[0]+1))
        return bisection(f,n,n) # Chai Wah Wu, Mar 25 2025

Formula

The characteristic function of this sequence is given by Sum_{n >= 1} x^a(n) = Sum_{n >= 1} mu(22*n)*x^n/(1 - x^n), where mu(n) is the Möbius function A008683. Cf. with the formula of Hanna in A051037. - Peter Bala, Mar 18 2019
Sum_{n>=1} 1/a(n) = (2*11)/((2-1)*(11-1)) = 11/5. - Amiram Eldar, Sep 23 2020
a(n) ~ exp(sqrt(2*log(2)*log(11)*n)) / sqrt(22). - Vaclav Kotesovec, Sep 23 2020