A003597 Numbers of the form 3^i*11^j.
1, 3, 9, 11, 27, 33, 81, 99, 121, 243, 297, 363, 729, 891, 1089, 1331, 2187, 2673, 3267, 3993, 6561, 8019, 9801, 11979, 14641, 19683, 24057, 29403, 35937, 43923, 59049, 72171, 88209, 107811, 131769, 161051, 177147, 216513, 264627, 323433
Offset: 1
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
GAP
Filtered([1..324000],n->PowerMod(33,n,n)=0); # Muniru A Asiru, Mar 19 2019
-
Haskell
import Data.Set (singleton, deleteFindMin, insert) a003597 n = a003597_list !! (n-1) a003597_list = f $ singleton (1,0,0) where f s = y : f (insert (3 * y, i + 1, j) $ insert (11 * y, i, j + 1) s') where ((y, i, j), s') = deleteFindMin s -- Reinhard Zumkeller, May 15 2015
-
Magma
[n: n in [1..4*10^5] | PrimeDivisors(n) subset [3, 11]]; // Vincenzo Librandi, Jun 27 2016
-
Mathematica
fQ[n_]:=PowerMod[33, n, n] == 0; Select[Range[4*10^5], fQ] (* Vincenzo Librandi, Jun 27 2016 *)
-
PARI
list(lim)=my(v=List(),N);for(n=0,log(lim)\log(11),N=11^n;while(N<=lim,listput(v,N);N*=3));vecsort(Vec(v)) \\ Charles R Greathouse IV, Jun 28 2011
Formula
The characteristic function of this sequence is given by Sum_{n >= 1} x^a(n) = Sum_{n >= 1} mu(33*n)*x^n/(1 - x^n), where mu(n) is the Möbius function A008683. Cf. with the formula of Hanna in A051037. - Peter Bala, Mar 18 2019
Sum_{n>=1} 1/a(n) = (3*11)/((3-1)*(11-1)) = 33/20. - Amiram Eldar, Sep 23 2020
a(n) ~ exp(sqrt(2*log(3)*log(11)*n)) / sqrt(33). - Vaclav Kotesovec, Sep 23 2020