A003665 a(n) = 2^(n-1)*( 2^n + (-1)^n ).
1, 1, 10, 28, 136, 496, 2080, 8128, 32896, 130816, 524800, 2096128, 8390656, 33550336, 134225920, 536854528, 2147516416, 8589869056, 34359869440, 137438691328, 549756338176, 2199022206976, 8796095119360, 35184367894528, 140737496743936, 562949936644096, 2251799847239680
Offset: 0
References
- John Derbyshire, Prime Obsession, Joseph Henry Press, April 2004, p. 16.
- M. Gardner, Riddles of Sphinx, M.A.A., 1987, p. 145.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- R. K. Guy, s-Additive sequences, Preprint, 1994. (Annotated scanned copy)
- Bill Sands, Problem 3257, Crux Math. 33 (2007), No.5, p. 298.
- Index entries for linear recurrences with constant coefficients, signature (2,8).
Programs
-
GAP
List([0..30], n-> 2^(n-1)*(2^n +(-1)^n)); # G. C. Greubel, Aug 02 2019
-
Magma
[2^(n-1)*( 2^n + (-1)^n ): n in [0..30]]; // Vincenzo Librandi, Aug 19 2011
-
Maple
A003665:=n->2^(n-1)*( 2^n + (-1)^n ): seq(A003665(n), n=0..30); # Wesley Ivan Hurt, Apr 28 2017
-
Mathematica
CoefficientList[Series[(1+8x)/(1-2x-8x^2), {x,0,30}], x] (* or *) LinearRecurrence[{2,8}, {1,1}, 30] (* Robert G. Wilson v, Sep 18 2013 *)
-
PARI
a(n)=2^(n-1)*( 2^n + (-1)^n );
-
Sage
[2^(n-1)*(2^n +(-1)^n) for n in (0..30)] # G. C. Greubel, Aug 02 2019
Formula
From Paul Barry, Mar 01 2003: (Start)
a(n) = 2*a(n-1) + 8*a(n-2), a(0)=a(1)=1.
a(n) = (4^n + (-2)^n)/2.
G.f.: (1-x)/((1+2*x)*(1-4*x)). (End)
From Paul Barry, Apr 05 2003: (Start)
a(n) = Sum_{k=0..floor(n/2)} binomial(n, 2*k)*9^k.
E.g.f. exp(x)*cosh(3*x). (End)
Given a(0)=1, b(0)=1 then for i=1, 2, ..., a(i)/b(i) = (a(i-1) + 9*b(i-1)) / (a(i-1) + b(i-1)). - Cino Hilliard, Sep 25 2005
a(n) = Sum_{k=0..n} A098158(n,k)*9^(n-k). - Philippe Deléham, Dec 26 2007
a(n) = ((1+sqrt(9))^n + (1-sqrt(9))^n)/2. - Al Hakanson (hawkuu(AT)gmail.com), Dec 08 2008
If p[1]=1, and p[i]=9, (i>1), and if A is Hessenberg matrix of order n defined by: A[i,j]=p[j-i+1], (i<=j), A[i,j]=-1, (i=j+1), and A[i,j]=0 otherwise. Then, for n>=1, a(n)=det(A). - Milan Janjic, Apr 29 2010
G.f.: G(0)/2, where G(k) = 1 + 1/(1 - x*(9*k-1)/(x*(9*k+8) - 1/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, May 28 2013
Extensions
Entry revised by N. J. A. Sloane, Nov 22 2006
Comments