cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A003682 Number of (undirected) Hamiltonian paths in the n-ladder graph K_2 X P_n.

Original entry on oeis.org

1, 4, 8, 14, 22, 32, 44, 58, 74, 92, 112, 134, 158, 184, 212, 242, 274, 308, 344, 382, 422, 464, 508, 554, 602, 652, 704, 758, 814, 872, 932, 994, 1058, 1124, 1192, 1262, 1334, 1408, 1484, 1562, 1642, 1724, 1808, 1894, 1982, 2072, 2164, 2258, 2354, 2452, 2552, 2654
Offset: 1

Views

Author

Keywords

Comments

Equals row sums of triangle A144336. - Gary W. Adamson, Sep 18 2008

References

  • F. Faase, On the number of specific spanning subgraphs of the graphs G X P_n, Ars Combin. 49 (1998), 129-154.

Crossrefs

Row n=2 of A332307.
Equals A002061(n) + 1, n > 1.
Cf. A144336. - Gary W. Adamson, Sep 18 2008
Cf. A137882.

Programs

  • Maple
    a:=n->sum(binomial(2,2*j)+n,j=0..n): seq(a(n), n=0..46); # Zerinvary Lajos, Feb 22 2007
    seq(floor((n^3+2*n)/(n+1)),n=1..47); # Gary Detlefs, Feb 20 2010
  • Mathematica
    Join[{1}, Table[n^2 - n + 2, {n, 2, 50}]] (* Harvey P. Dale, Jun 14 2011 *)
    Join[{1}, LinearRecurrence[{3, -3, 1}, {4, 8, 14}, 50]] (* Harvey P. Dale, Jun 14 2011 *)
  • PARI
    a(n)=if(n>1, n^2-n+2, 1) \\ Charles R Greathouse IV, Jan 05 2018

Formula

For n>1, a(n) = n^2 - n + 2 = A014206(n-1).
Equals binomial transform of [1, 3, 1, 1, -1, 1, -1, 1, ...]. - Gary W. Adamson, Apr 23 2008
G.f.: x*(1 + x - x^2 + x^3)/(1-x)^3. - R. J. Mathar, Dec 16 2008
a(n) = floor((n^3 + 2*n)/(n+1)). - Gary Detlefs, Feb 20 2010
Except for the first term, a(n) = 2*n + a(n-1), (with a(1)=4). - Vincenzo Librandi, Dec 06 2010
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3), a(1)=1, a(2)=4, a(3)=8. - Harvey P. Dale, Jun 14 2011
Sum_{n>=1} 1/a(n) = 1/2 + Pi*tanh(Pi*sqrt(7)/2)/sqrt(7) = 1.686827... - R. J. Mathar, Apr 24 2024
From Elmo R. Oliveira, Jun 06 2025: (Start)
E.g.f.: exp(x)*(2 + x^2) - (2 + x).
a(n) = A137882(n)/2. (End)