cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A003757 Number of perfect matchings (or domino tilings) in D_4 X P_(n-1).

Original entry on oeis.org

0, 1, 1, 6, 13, 49, 132, 433, 1261, 3942, 11809, 36289, 109824, 335425, 1018849, 3104934, 9443629, 28756657, 87504516, 266383153, 810723277, 2467770054, 7510988353, 22861948801, 69584925696, 211799836801, 644660351425
Offset: 0

Views

Author

Keywords

Comments

Here D_4 is the graph on 4 vertices with edges (1,2), (1,3), (2,3), (1.4): a triangular kite with a tail.
This is a divisibility sequence; that is, if n divides m, then a(n) divides a(m). - T. D. Noe, Dec 22 2008
This is the case P1 = 1, P2 = -8, Q = 1 of the 3 parameter family of 4th-order linear divisibility sequences found by Williams and Guy. - Peter Bala, Mar 31 2014

References

  • F. Faase, On the number of specific spanning subgraphs of the graphs G X P_n, Ars Combin. 49 (1998), 129-154.

Programs

  • Magma
    I:=[0,1,1,6]; [n le 4 select I[n] else Self(n-1)+6*Self(n-2)+Self(n-3)-Self(n-4): n in [1..30]]; // Vincenzo Librandi, Sep 24 2011
  • Mathematica
    CoefficientList[Series[x(1-x^2)/(1-x-6x^2-x^3+x^4), {x,0,30}], x] (* T. D. Noe, Dec 22 2008 *)
    LinearRecurrence[{1,6,1,-1},{0,1,1,6},40] (* Harvey P. Dale, Sep 23 2011 *)

Formula

a(n) = a(n-1) + 6a(n-2) + a(n-3) - a(n-4), n>4.
G.f.: x(1-x^2)/(1-x-6x^2-x^3+x^4). [T. D. Noe, Dec 22 2008]
From Peter Bala, Mar 31 2014: (Start)
a(n) = ( T(n,alpha) - T(n,beta) )/(alpha - beta), where alpha = (1 + sqrt(33))/4 and beta = (1 - sqrt(33))/4 and T(n,x) denotes the Chebyshev polynomial of the first kind.
a(n) = the bottom left entry of the 2 X 2 matrix T(n, M), where M is the 2 X 2 matrix [0, 2; 1, 1/2].
a(n) = U(n-1,i*(1 + sqrt(3))/sqrt(8))*U(n-1,i*(1 - sqrt(3))/sqrt(8)), where U(n,x) denotes the Chebyshev polynomial of the second kind.
See the remarks in A100047 for the general connection between Chebyshev polynomials and 4th-order linear divisibility sequences. (End)

Extensions

Offset and name changed by T. D. Noe, Dec 22 2008
0 and 1 prepended by T. D. Noe, Dec 22 2008