A003830
Order of universal Chevalley group D_n (3).
Original entry on oeis.org
2, 576, 12130560, 19808719257600, 2579025599882610278400, 27051378802435080953011843891200, 22941271269626791484963824552883153534976000, 1574947942338058195342953134725345263180893951172280320000
Offset: 1
- J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker and R. A. Wilson, ATLAS of Finite Groups. Oxford Univ. Press, 1985 [for best online version see https://oeis.org/wiki/Welcome#Links_to_Other_Sites], p. xvi.
- H. S. M. Coxeter and W. O. J. Moser, Generators and Relations for Discrete Groups, 4th ed., Springer-Verlag, NY, reprinted 1984, p. 131.
-
f:= n -> 3^(n*(n-1))*(3^n-1)*mul(3^(2*k)-1,k=1..n-1):
map(f, [$1..10]); # Robert Israel, Sep 22 2015
-
f[m_, n_] := m^(n (n - 1)) (m^n - 1) Product[m^(2 k) - 1, {k, n - 1}];
f[3, #] & /@ Range@ 8 (* Michael De Vlieger, Sep 17 2015 *)
-
a(n,q=3) = q^(n*(n-1)) * (q^n-1) * prod(k=1,n-1,q^(2*k)-1); \\ Michel Marcus, Sep 17 2015
A003831
Order of universal Chevalley group D_n (4).
Original entry on oeis.org
3, 3600, 987033600, 67010895544320000, 1154606796534757164318720000, 5081732431326820541485324550799360000000, 5722569627753465177061732369386833143098255605760000000, 1649493899207759406688161287839326786813727965837588934265143296000000000
Offset: 1
- J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker and R. A. Wilson, ATLAS of Finite Groups. Oxford Univ. Press, 1985 [for best online version see https://oeis.org/wiki/Welcome#Links_to_Other_Sites], p. xvi.
- H. S. M. Coxeter and W. O. J. Moser, Generators and Relations for Discrete Groups, 4th ed., Springer-Verlag, NY, reprinted 1984, p. 131.
-
a:= n -> 4^(n*(n-1))*(4^n-1)*mul(4^(2*k)-1, k=1..n-1):
seq(a(n), n=1..8); # Alois P. Heinz, Jun 24 2025
-
d[q_, n_] := q^(n*(n-1)) * (q^n-1) * Product[q^(2*k) - 1, {k, 1, n-1}]; Table[d[4, n], {n, 1, 8}] (* Amiram Eldar, Jun 24 2025 *)
A003832
Order of universal Chevalley group D_n (5).
Original entry on oeis.org
4, 14400, 29016000000, 35646156000000000000, 27230655539587500000000000000000, 12987912192212013697265625000000000000000000000, 3870897639595436240585697704315185546875000000000000000000000000
Offset: 1
- J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker and R. A. Wilson, ATLAS of Finite Groups. Oxford Univ. Press, 1985 [for best online version see https://oeis.org/wiki/Welcome#Links_to_Other_Sites], p. xvi.
- H. S. M. Coxeter and W. O. J. Moser, Generators and Relations for Discrete Groups, 4th ed., Springer-Verlag, NY, reprinted 1984, p. 131.
-
d[q_, n_] := q^(n*(n-1)) * (q^n-1) * Product[q^(2*k) - 1, {k, 1, n-1}]; Table[d[5, n], {n, 1, 8}] (* Amiram Eldar, Jun 24 2025 *)
A003834
Order of universal Chevalley group D_n (7).
Original entry on oeis.org
6, 112896, 4635182361600, 450219964711195607040000, 104772288945650279285144527564308480000, 58523113108854003897259712887271278079596939632967680000
Offset: 1
- J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker and R. A. Wilson, ATLAS of Finite Groups. Oxford Univ. Press, 1985 [for best online version see https://oeis.org/wiki/Welcome#Links_to_Other_Sites], p. xvi.
- H. S. M. Coxeter and W. O. J. Moser, Generators and Relations for Discrete Groups, 4th ed., Springer-Verlag, NY, reprinted 1984, p. 131.
-
d[q_, n_] := q^(n*(n-1)) * (q^n-1) * Product[q^(2*k) - 1, {k, 1, n-1}]; Table[d[7, n], {n, 1, 8}] (* Amiram Eldar, Jun 24 2025 *)
A003836
Order of universal Chevalley group D_n (9).
Original entry on oeis.org
8, 518400, 203039372390400, 516728027484579221176320000, 8618734695485494933763249322971006238720000, 943067434111013598831873524092098584047517678156686295040000000
Offset: 1
- J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker and R. A. Wilson, ATLAS of Finite Groups. Oxford Univ. Press, 1985 [for best online version see https://oeis.org/wiki/Welcome#Links_to_Other_Sites], p. xvi.
- H. S. M. Coxeter and W. O. J. Moser, Generators and Relations for Discrete Groups, 4th ed., Springer-Verlag, NY, reprinted 1984, p. 131.
-
d[q_, n_] := q^(n*(n-1)) * (q^n-1) * Product[q^(2*k) - 1, {k, 1, n-1}]; Table[d[9, n], {n, 1, 8}] (* Amiram Eldar, Jun 24 2025 *)
A180063
Pascal-like triangle with trigonometric properties, row sums = powers of 4; generated from shifted columns of triangle A180062.
Original entry on oeis.org
1, 1, 3, 1, 4, 11, 1, 7, 15, 41, 1, 8, 38, 56, 153, 1, 11, 46, 186, 209, 571, 1, 12, 81, 232, 859, 780, 2131, 1, 15, 93, 499, 1091, 3821, 2911, 7953, 1, 16, 140, 592, 2774, 4912, 16556, 10864, 29681, 1, 19, 156, 1044, 3366, 14418, 21468, 70356, 40545, 110771
Offset: 0
First few rows of the triangle:
1;
1, 3;
1, 4, 11;
1, 7, 15, 41;
1, 8, 38, 56, 153;
1, 11, 46, 186, 209, 571;
1, 12, 81, 232, 859, 780, 2131;
1, 15, 93, 499, 1091, 3821, 2911, 7953;
1, 16, 140, 592, 2774, 4912, 16556, 10864, 29681;
1, 19, 156, 1044, 3366, 14418, 21468, 70356, 40545, 110771;
...
Showing 1-6 of 6 results.
Comments