A003830
Order of universal Chevalley group D_n (3).
Original entry on oeis.org
2, 576, 12130560, 19808719257600, 2579025599882610278400, 27051378802435080953011843891200, 22941271269626791484963824552883153534976000, 1574947942338058195342953134725345263180893951172280320000
Offset: 1
- J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker and R. A. Wilson, ATLAS of Finite Groups. Oxford Univ. Press, 1985 [for best online version see https://oeis.org/wiki/Welcome#Links_to_Other_Sites], p. xvi.
- H. S. M. Coxeter and W. O. J. Moser, Generators and Relations for Discrete Groups, 4th ed., Springer-Verlag, NY, reprinted 1984, p. 131.
-
f:= n -> 3^(n*(n-1))*(3^n-1)*mul(3^(2*k)-1,k=1..n-1):
map(f, [$1..10]); # Robert Israel, Sep 22 2015
-
f[m_, n_] := m^(n (n - 1)) (m^n - 1) Product[m^(2 k) - 1, {k, n - 1}];
f[3, #] & /@ Range@ 8 (* Michael De Vlieger, Sep 17 2015 *)
-
a(n,q=3) = q^(n*(n-1)) * (q^n-1) * prod(k=1,n-1,q^(2*k)-1); \\ Michel Marcus, Sep 17 2015
A003835
Order of universal Chevalley group D_n (8).
Original entry on oeis.org
7, 254016, 34558531338240, 19031213036231093492121600, 42863636354909175368011800612065142374400, 395357821818670720302212111102866352228895870285434270515200
Offset: 1
- J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker and R. A. Wilson, ATLAS of Finite Groups. Oxford Univ. Press, 1985 [for best online version see https://oeis.org/wiki/Welcome#Links_to_Other_Sites], p. xvi.
- H. S. M. Coxeter and W. O. J. Moser, Generators and Relations for Discrete Groups, 4th ed., Springer-Verlag, NY, reprinted 1984, p. 131.
-
d[q_, n_] := q^(n*(n-1)) * (q^n-1) * Product[q^(2*k) - 1, {k, 1, n-1}]; Table[d[8, n], {n, 1, 8}] (* Amiram Eldar, Jun 24 2025 *)
A003831
Order of universal Chevalley group D_n (4).
Original entry on oeis.org
3, 3600, 987033600, 67010895544320000, 1154606796534757164318720000, 5081732431326820541485324550799360000000, 5722569627753465177061732369386833143098255605760000000, 1649493899207759406688161287839326786813727965837588934265143296000000000
Offset: 1
- J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker and R. A. Wilson, ATLAS of Finite Groups. Oxford Univ. Press, 1985 [for best online version see https://oeis.org/wiki/Welcome#Links_to_Other_Sites], p. xvi.
- H. S. M. Coxeter and W. O. J. Moser, Generators and Relations for Discrete Groups, 4th ed., Springer-Verlag, NY, reprinted 1984, p. 131.
-
a:= n -> 4^(n*(n-1))*(4^n-1)*mul(4^(2*k)-1, k=1..n-1):
seq(a(n), n=1..8); # Alois P. Heinz, Jun 24 2025
-
d[q_, n_] := q^(n*(n-1)) * (q^n-1) * Product[q^(2*k) - 1, {k, 1, n-1}]; Table[d[4, n], {n, 1, 8}] (* Amiram Eldar, Jun 24 2025 *)
A003834
Order of universal Chevalley group D_n (7).
Original entry on oeis.org
6, 112896, 4635182361600, 450219964711195607040000, 104772288945650279285144527564308480000, 58523113108854003897259712887271278079596939632967680000
Offset: 1
- J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker and R. A. Wilson, ATLAS of Finite Groups. Oxford Univ. Press, 1985 [for best online version see https://oeis.org/wiki/Welcome#Links_to_Other_Sites], p. xvi.
- H. S. M. Coxeter and W. O. J. Moser, Generators and Relations for Discrete Groups, 4th ed., Springer-Verlag, NY, reprinted 1984, p. 131.
-
d[q_, n_] := q^(n*(n-1)) * (q^n-1) * Product[q^(2*k) - 1, {k, 1, n-1}]; Table[d[7, n], {n, 1, 8}] (* Amiram Eldar, Jun 24 2025 *)
A003836
Order of universal Chevalley group D_n (9).
Original entry on oeis.org
8, 518400, 203039372390400, 516728027484579221176320000, 8618734695485494933763249322971006238720000, 943067434111013598831873524092098584047517678156686295040000000
Offset: 1
- J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker and R. A. Wilson, ATLAS of Finite Groups. Oxford Univ. Press, 1985 [for best online version see https://oeis.org/wiki/Welcome#Links_to_Other_Sites], p. xvi.
- H. S. M. Coxeter and W. O. J. Moser, Generators and Relations for Discrete Groups, 4th ed., Springer-Verlag, NY, reprinted 1984, p. 131.
-
d[q_, n_] := q^(n*(n-1)) * (q^n-1) * Product[q^(2*k) - 1, {k, 1, n-1}]; Table[d[9, n], {n, 1, 8}] (* Amiram Eldar, Jun 24 2025 *)
Showing 1-5 of 5 results.