cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A003040 Highest degree of an irreducible representation of symmetric group S_n of degree n.

Original entry on oeis.org

1, 1, 2, 3, 6, 16, 35, 90, 216, 768, 2310, 7700, 21450, 69498, 292864, 1153152, 4873050, 16336320, 64664600, 249420600, 1118939184, 5462865408, 28542158568, 117487079424, 547591590000, 2474843571200, 12760912164000, 57424104738000, 295284192952320
Offset: 1

Views

Author

Keywords

Comments

Highest number of standard tableaux of the Ferrers diagrams of the partitions of n. Example: a(4) = 3 because to the partitions 4, 31, 22, 211, and 1111 there correspond 1, 3, 2, 3, and 1 standard tableaux, respectively. - Emeric Deutsch, Oct 02 2015

Examples

			a(5) = 6 because the degrees for S_5 are 1,1,4,4,5,5,6.
		

References

  • J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker and R. A. Wilson, ATLAS of Finite Groups. Oxford Univ. Press, 1985 [for best online version see https://oeis.org/wiki/Welcome#Links_to_Other_Sites].
  • D. E. Littlewood, The Theory of Group Characters and Matrix Representations of Groups. 2nd ed., Oxford University Press, 1950, p. 265.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

A117500 gives the corresponding partitions of n.

Programs

  • Mathematica
    h[l_] := With[{n = Length[l]}, Total[l]!/Product[Product[1 + l[[i]] - j + Sum[If[l[[k]] >= j, 1, 0], {k, i + 1, n}], {j, 1, l[[i]]}], {i, 1, n}]];
    g[n_, i_, l_] := If[n == 0 || i == 1, h[Join[l, Array[1 &, n]]], If[i < 1, 0, Flatten@ Table[g[n - i*j, i - 1, Join[l, Array[i&, j]]], {j, 0, n/i}]]];
    a[n_] := a[n] = g[n, n, {}] // Max;
    Table[Print[n, " ", a[n]]; a[n], {n, 1, 50}] (* Jean-François Alcover, Sep 23 2024, after Alois P. Heinz in A060240 *)
  • Sage
    def A003040(n):
        res = 1
        for P in Partitions(n):
            res = max(res, P.dimension())
        return res
    # Eric M. Schmidt, May 07 2013

Extensions

Entry revised and extended by N. J. A. Sloane, Apr 28 2006
a(29) corrected by Eric M. Schmidt, May 07 2013

A088961 Zigzag matrices listed entry by entry.

Original entry on oeis.org

3, 5, 5, 5, 10, 14, 14, 7, 14, 21, 21, 7, 21, 35, 42, 48, 27, 9, 48, 69, 57, 36, 27, 57, 78, 84, 9, 36, 84, 126, 132, 165, 110, 44, 11, 165, 242, 209, 121, 55, 110, 209, 253, 220, 165, 44, 121, 220, 297, 330, 11, 55, 165, 330, 462
Offset: 1

Views

Author

Paul Boddington, Oct 28 2003

Keywords

Comments

For each n >= 1 the n X n matrix Z(n) is constructed as follows. The i-th row of Z(n) is obtained by generating a hexagonal array of numbers with 2*n+1 rows, 2*n numbers in the odd numbered rows and 2*n+1 numbers in the even numbered rows. The first row is all 0's except for two 1's in the i-th and the (2*n+1-i)th positions. The remaining rows are generated using the same rule for generating Pascal's triangle. The i-th row of Z(n) then consists of the first n numbers in the bottom row of our array.
For example the top row of Z(2) is [5,5], found from the array:
. 1 0 0 1
1 1 0 1 1
. 2 1 1 2
2 3 2 3 2
. 5 5 5 5
Zigzag matrices have remarkable properties. Here is a selection:
1) Z(n) is symmetric.
2) det(Z(n)) = A085527(n).
3) tr(Z(n)) = A033876(n-1).
4) If 2*n+1 is a power of a prime p then all entries of Z(n) are multiples of p.
5) If 4*n+1 is a power of a prime p then the dot product of any two distinct rows of Z(n) is a multiple of p.
6) It is always possible to move from the bottom left entry of Z(n) to the top right entry using only rightward and upward moves and visiting only odd numbers.
A001700(n) = last term of last row of Z(n): a(A000330(n-1)) = A001700(n); A230585(n) = first term of first row of Z(n): a(A056520(n-1)) = A230585(n); A051417(n) = greatest common divisor of entries of Z(n). - Reinhard Zumkeller, Oct 25 2013

Examples

			The first five values are 3, 5, 5, 5, 10 because the first two zigzag matrices are [[3]] and [[5,5],[5,10]].
		

Crossrefs

Programs

  • Haskell
    a088961 n = a088961_list !! (n-1)
    a088961_list = concat $ concat $ map f [1..] where
       f x = take x $ g (take x (1 : [0,0..])) where
         g us = (take x $ g' us) : g (0 : init us)
         g' vs = last $ take (2 * x + 1) $
                        map snd $ iterate h (0, vs ++ reverse vs)
       h (p,ws) = (1 - p, drop p $ zipWith (+) ([0] ++ ws) (ws ++ [0]))
    -- Reinhard Zumkeller, Oct 25 2013
  • Mathematica
    Flatten[Table[Binomial[2n,n+j-i]-Binomial[2n,n+i+j]+ Binomial[2n, 3n+1-i-j], {n,5},{i,n},{j,n}]] (* Harvey P. Dale, Dec 15 2011 *)

Formula

The ij entry of Z(n) is binomial(2*n, n+j-i) - binomial(2*n, n+i+j) + binomial(2*n, 3*n+1-i-j).

A003877 Degrees of irreducible representations of symmetric group S_13.

Original entry on oeis.org

1, 1, 12, 12, 65, 65, 66, 66, 208, 208, 220, 220, 429, 429, 429, 429, 429, 429, 495, 495, 572, 572, 792, 792, 924, 936, 936, 1287, 1287, 1365, 1365, 1430, 1430, 2574, 2574, 2574, 2574, 2860, 2860, 3003, 3003, 3432, 3432, 3432, 3432, 3432, 3432, 3575, 3575, 3640, 3640, 4004, 4004, 4212, 4212, 4290, 4290, 5005, 5005, 5148, 5148, 5720, 5720, 6006, 6006, 6435, 6435, 6864, 6864, 7371, 7371, 7800, 7800, 8580, 8580, 8580, 9009, 9009, 9360, 9360, 10296, 10296, 11440, 11440, 11583, 11583, 12012, 12012, 12012, 12012, 12870, 12870, 15015, 15015, 16016, 17160, 17160, 20592, 20592, 21450, 21450
Offset: 1

Views

Author

Keywords

Comments

All 101 terms of this finite sequence are shown.

References

  • J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker and R. A. Wilson, ATLAS of Finite Groups. Oxford Univ. Press, 1985 [for best online version see https://oeis.org/wiki/Welcome#Links_to_Other_Sites].

Crossrefs

Row n=13 of A060240.

Programs

  • GAP
    A003877 := List(Irr(CharacterTable("S13")), chi->chi[1]);; Sort(A003877); # Eric M. Schmidt, Jul 18 2012
  • Magma
    // See A003875 for Magma code.
    
  • Mathematica
    h[l_] := With[{n = Length[l]}, Total[l]!/Product[Product[1 + l[[i]] - j + Sum[If[l[[k]] >= j, 1, 0], {k, i + 1, n}], {j, 1, l[[i]]}], {i, 1, n}]];
    g[n_, i_, l_] := If[n == 0 || i == 1, h[Join[l, Array[1&, n]]], If[i < 1, 0, Flatten@ Table[g[n - i*j, i - 1, Join[l, Array[i &, j]]], {j, 0, n/i}]]];
    T[n_] := g[n, n, {}];
    Sort[T[13]] (* Jean-François Alcover, Sep 23 2024, after Alois P. Heinz in A060240 *)

Extensions

More terms from Emeric Deutsch, May 13 2004

A093791 Hook products of all partitions of 12.

Original entry on oeis.org

62208, 82944, 82944, 85050, 85050, 107520, 107520, 115200, 115200, 129600, 129600, 134400, 134400, 136080, 136080, 155520, 155520, 161280, 161280, 179200, 179200, 181440, 201600, 201600, 226800, 226800, 228096, 230400, 230400, 248832
Offset: 1

Views

Author

Emeric Deutsch, May 17 2004

Keywords

Crossrefs

Row n=12 of A093784.

Programs

  • Maple
    H:=proc(pa) local F,j,p,Q,i,col,a,A: F:=proc(x) local i, ct: ct:=0: for i from 1 to nops(x) do if x[i]>1 then ct:=ct+1 else fi od: ct; end: for j from 1 to nops(pa) do p[1][j]:=pa[j] od: Q[1]:=[seq(p[1][j],j=1..nops(pa))]: for i from 2 to pa[1] do for j from 1 to F(Q[i-1]) do p[i][j]:=Q[i-1][j]-1 od: Q[i]:=[seq(p[i][j],j=1..F(Q[i-1]))] od: for i from 1 to pa[1] do col[i]:=[seq(Q[i][j]+nops(Q[i])-j,j=1..nops(Q[i]))] od: a:=proc(i,j) if i<=nops(Q[j]) and j<=pa[1] then Q[j][i]+nops(Q[j])-i else 1 fi end: A:=matrix(nops(pa),pa[1],a): product(product(A[m,n],n=1..pa[1]),m=1..nops(pa)); end: with(combinat): rev:=proc(a) [seq(a[nops(a)+1-i],i=1..nops(a))] end: sort([seq(H(rev(partition(12)[q])),q=1..numbpart(12))]);
  • Mathematica
    h[l_] := With[{n = Length[l]}, Total[l]!/Product[Product[1 + l[[i]] - j + Sum[If[l[[k]] >= j, 1, 0], {k, i + 1, n}], {j, 1, l[[i]]}], {i, 1, n}]];
    g[n_, i_, l_] := If[n == 0 || i == 1, h[Join[l, Array[1 &, n]]], If[i < 1, 0, Flatten@ Table[g[n - i*j, i - 1, Join[l, Array[i&, j]]], {j, 0, n/i}]]];
    T[n_] := g[n, n, {}];
    Sort[12!/T[12]] (* Jean-François Alcover, Sep 22 2024, after Alois P. Heinz in A060240 *)

Formula

a(n) = 12!/A003876(78-n).
Showing 1-4 of 4 results.