A003947 Expansion of (1+x)/(1-4*x).
1, 5, 20, 80, 320, 1280, 5120, 20480, 81920, 327680, 1310720, 5242880, 20971520, 83886080, 335544320, 1342177280, 5368709120, 21474836480, 85899345920, 343597383680, 1374389534720, 5497558138880, 21990232555520, 87960930222080, 351843720888320
Offset: 0
Links
- T. D. Noe, Table of n, a(n) for n = 0..200
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 306
- Milan Janjic, Enumerative Formulas for Some Functions on Finite Sets
- Index to divisibility sequences
- Index entries for linear recurrences with constant coefficients, signature (4).
- Index entries for sequences related to trees
Programs
-
GAP
Concatenation([1], List([1..30], n-> 5*4^(n-1) )); # G. C. Greubel, Aug 10 2019
-
Magma
[1] cat [5*4^(n-1): n in [1..30]]; // G. C. Greubel, Aug 10 2019
-
Maple
k := 5; if n = 0 then 1 else k*(k-1)^(n-1); fi;
-
Mathematica
q = 5; Join[{a = 1}, Table[If[n != 0, a = q*a - a, a = q*a], {n, 0, 25}]] (* and *) Join[{1}, 5*4^Range[0, 25]] (* Vladimir Joseph Stephan Orlovsky, Jul 11 2011 *) LinearRecurrence[{4},{1,5},30] (* Harvey P. Dale, Apr 19 2015 *)
-
PARI
a(n)=5*4^n\4 \\ Charles R Greathouse IV, Sep 08 2011
-
Sage
[1]+[5*4^(n-1) for n in (1..30)] # G. C. Greubel, Aug 10 2019
Formula
Binomial transform of A060925. Its binomial transform is A003463 (without leading zero). - Paul Barry, May 19 2003
From Paul Barry, May 19 2003: (Start)
a(n) = (5*4^n - 0^n)/4.
G.f.: (1+x)/(1-4*x).
E.g.f.: (5*exp(4*x) - exp(0))/4. (End)
a(n) = Sum_{k=0..n} A029653(n, k)*x^k for x = 3. - Philippe Deléham, Jul 10 2005
a(n) = 5*A000302(n-1), n>0.
a(n) = 4*a(n-1), n>1. - Vincenzo Librandi, Dec 31 2010
G.f.: 2+x- 2/G(0), where G(k)= 1 + 1/(1 - x*(5*k-4)/(x*(5*k+1) - 1/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, Jun 04 2013
Extensions
Edited by N. J. A. Sloane, Dec 04 2009
Comments