A003950 Expansion of g.f.: (1+x)/(1-7*x).
1, 8, 56, 392, 2744, 19208, 134456, 941192, 6588344, 46118408, 322828856, 2259801992, 15818613944, 110730297608, 775112083256, 5425784582792, 37980492079544, 265863444556808, 1861044111897656, 13027308783283592, 91191161482985144, 638338130380896008
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 309
- A. M. Nemirovsky et al., Marriage of exact enumeration and 1/d expansion methods: lattice model of dilute polymers, J. Statist. Phys., 67 (1992), 1083-1108.
- Index to divisibility sequences
- Index entries for linear recurrences with constant coefficients, signature (7).
- Index entries for sequences related to trees
Programs
-
GAP
k:=8;; Concatenation([1], List([1..25], n-> k*(k-1)^(n-1) )); # G. C. Greubel, Sep 24 2019
-
Magma
[1] cat [8*7^(n-1): n in [1..25]]; // Vincenzo Librandi, Dec 11 2012
-
Maple
k:=8; seq(`if`(n=0, 1, k*(k-1)^(n-1)), n = 0..25); # modified by G. C. Greubel, Sep 24 2019
-
Mathematica
Join[{1}, 8*7^Range[0, 25]] (* Vladimir Joseph Stephan Orlovsky, Jul 11 2011 *) CoefficientList[Series[(1+x)/(1-7*x), {x, 0, 30}], x] (* Vincenzo Librandi, Dec 10 2012 *)
-
PARI
a(n)=if(n,8*7^(n-1),1) \\ Charles R Greathouse IV, Mar 22 2016
-
Sage
k=8; [1]+[k*(k-1)^(n-1) for n in (1..25)] # G. C. Greubel, Sep 24 2019
Formula
a(n) = Sum_{k=0..n} A029653(n, k)*x^k for x = 6. - Philippe Deléham, Jul 10 2005
From Philippe Deléham, Nov 21 2007: (Start)
a(n) = 8*7^(n-1) for n>=1, a(0)=1 .
G.f.: (1+x)/(1-7x).
The Hankel transform of this sequence is [1,-8,0,0,0,0,0,0,0,0,...]. (End)
a(0)=1, a(1)=8, a(n) = 7*a(n-1). - Vincenzo Librandi, Dec 10 2012
E.g.f.: (8*exp(7*x) - 1)/7. - G. C. Greubel, Sep 24 2019
Extensions
Edited by N. J. A. Sloane, Dec 04 2009
Comments