cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 58 results. Next

A108983 Inverse binomial transform of A003950.

Original entry on oeis.org

1, 7, 41, 247, 1481, 8887, 53321, 319927, 1919561, 11517367, 69104201, 414625207, 2487751241, 14926507447, 89559044681, 537354268087, 3224125608521, 19344753651127, 116068521906761, 696411131440567, 4178466788643401
Offset: 0

Views

Author

Philippe Deléham, Jul 23 2005

Keywords

Comments

Let A be the Hessenberg matrix of order n, defined by: A[1,j]=1, A[i,i]:=-4, (i>1), A[i,i-1]=-1, and A[i,j]=0 otherwise. Then, for n>=1, a(n-1)=charpoly(A,2). [Milan Janjic, Jan 27 2010]

Crossrefs

Cf. A003950.

Programs

  • Magma
    I:=[1,7]; [n le 2 select I[n] else 5*Self(n-1)+6*Self(n-2): n in [1..30]]; // Vincenzo Librandi, Aug 27 2014
  • Maple
    seq(-((-1)^n-8*6^n)/7, n=0..100); # Robert Israel, Aug 27 2014
  • Mathematica
    CoefficientList[Series[-(1 + 2 x)/((1 + x) (6 x - 1)), {x, 0, 30}], x] (* Vincenzo Librandi, Aug 27 2014 *)

Formula

a(n) = 5a(n-1) + 6a(n-2), a(0) = 1, a(1) = 7.
a(2n) = 6a(2n-1) - 1; a(2n+1) = 6a(2n) + 1.
O.g.f.: -(1+2x)/[(1+x)(6x-1)]. - R. J. Mathar, Apr 02 2008

Extensions

More terms from R. J. Mathar, Apr 02 2008

A003945 Expansion of g.f. (1+x)/(1-2*x).

Original entry on oeis.org

1, 3, 6, 12, 24, 48, 96, 192, 384, 768, 1536, 3072, 6144, 12288, 24576, 49152, 98304, 196608, 393216, 786432, 1572864, 3145728, 6291456, 12582912, 25165824, 50331648, 100663296, 201326592, 402653184, 805306368, 1610612736, 3221225472, 6442450944, 12884901888
Offset: 0

Views

Author

Keywords

Comments

Coordination sequence for infinite tree with valency 3.
Number of Hamiltonian cycles in K_3 X P_n.
Number of ternary words of length n avoiding aa, bb, cc.
For n > 0, row sums of A029635. - Paul Barry, Jan 30 2005
Binomial transform is {1, 4, 13, 40, 121, 364, ...}, see A003462. - Philippe Deléham, Jul 23 2005
Convolved with the Jacobsthal sequence A001045 = A001786: (1, 4, 12, 32, 80, ...). - Gary W. Adamson, May 23 2009
Equals (n+1)-th row sums of triangle A161175. - Gary W. Adamson, Jun 05 2009
a(n) written in base 2: a(0) = 1, a(n) for n >= 1: 11, 110, 11000, 110000, ..., i.e.: 2 times 1, (n-1) times 0 (see A003953(n)). - Jaroslav Krizek, Aug 17 2009
INVERTi transform of A003688. - Gary W. Adamson, Aug 05 2010
An elephant sequence, see A175655. For the central square four A[5] vectors, with decimal values 42, 138, 162 and 168, lead to this sequence. For the corner squares these vectors lead to the companion sequence A083329. - Johannes W. Meijer, Aug 15 2010
A216022(a(n)) != 2 and A216059(a(n)) != 3. - Reinhard Zumkeller, Sep 01 2012
Number of length-n strings of 3 letters with no two adjacent letters identical. The general case (strings of r letters) is the sequence with g.f. (1+x)/(1-(r-1)*x). - Joerg Arndt, Oct 11 2012
Sums of pairs of rows of Pascal's triangle A007318, T(2n,k)+T(2n+1,k); Sum_{n>=1} A000290(n)/a(n) = 4. - John Molokach, Sep 26 2013

Crossrefs

Essentially same as A007283 (3*2^n) and A042950.
Generating functions of the form (1+x)/(1-k*x) for k=1 to 12: A040000, A003945, A003946, A003947, A003948, A003949, A003950, A003951, A003952.
Generating functions of the form (1+x)/(1-k*x) for k=13 to 30: A170732, A170733, A170734, A170735, A170736, A170737, A170738, A170739, A170740, A170741, A170742, A170743, A170744, A170745, A170746, A170747, A170748.
Generating functions of the form (1+x)/(1-k*x) for k=31 to 50: A170749, A170750, A170751, A170752, A170753, A170754, A170755, A170756, A170757, A170758, A170759, A170760, A170761, A170762, A170763, A170764, A170765, A170766, A170767, A170768, A170769.
Cf. A003688.

Programs

  • Maple
    k := 3; if n = 0 then 1 else k*(k-1)^(n-1); fi;
  • Mathematica
    Join[{1}, 3*2^Range[0, 60]] (* Vladimir Joseph Stephan Orlovsky, Jun 09 2011 *)
    Table[2^n+Floor[2^(n-1)], {n,0,30}] (* Martin Grymel, Oct 17 2012 *)
    CoefficientList[Series[(1+x)/(1-2x),{x,0,40}],x] (* or *) LinearRecurrence[ {2},{1,3},40] (* Harvey P. Dale, May 04 2017 *)
  • PARI
    a(n)=if(n,3<Charles R Greathouse IV, Jan 12 2012

Formula

a(0) = 1; for n > 0, a(n) = 3*2^(n-1).
a(n) = 2*a(n-1), n > 1; a(0)=1, a(1)=3.
More generally, the g.f. (1+x)/(1-k*x) produces the sequence [1, 1 + k, (1 + k)*k, (1 + k)*k^2, ..., (1+k)*k^(n-1), ...], with a(0) = 1, a(n) = (1+k)*k^(n-1) for n >= 1. Also a(n+1) = k*a(n) for n >= 1. - Zak Seidov and N. J. A. Sloane, Dec 05 2009
The g.f. (1+x)/(1-k*x) produces the sequence with closed form (in PARI notation) a(n)=(n>=0)*k^n+(n>=1)*k^(n-1). - Jaume Oliver Lafont, Dec 05 2009
Binomial transform of A000034. a(n) = (3*2^n - 0^n)/2. - Paul Barry, Apr 29 2003
a(n) = Sum_{k=0..n} (n+k)*binomial(n, k)/n. - Paul Barry, Jan 30 2005
a(n) = Sum_{k=0..n} A029653(n, k)*x^k for x = 1. - Philippe Deléham, Jul 10 2005
Binomial transform of A000034. Hankel transform is {1,-3,0,0,0,...}. - Paul Barry, Aug 29 2006
a(0) = 1, a(n) = 2 + Sum_{k=0..n-1} a(k) for n >= 1. - Joerg Arndt, Aug 15 2012
a(n) = 2^n + floor(2^(n-1)). - Martin Grymel, Oct 17 2012
E.g.f.: (3*exp(2*x) - 1)/2. - Stefano Spezia, Jan 31 2023

Extensions

Edited by N. J. A. Sloane, Dec 04 2009

A003946 Expansion of (1+x)/(1-3*x).

Original entry on oeis.org

1, 4, 12, 36, 108, 324, 972, 2916, 8748, 26244, 78732, 236196, 708588, 2125764, 6377292, 19131876, 57395628, 172186884, 516560652, 1549681956, 4649045868, 13947137604, 41841412812, 125524238436, 376572715308, 1129718145924
Offset: 0

Views

Author

Keywords

Comments

Coordination sequence for infinite tree with valency 4.
The n-th term of the coordination sequence of the infinite tree with valency 2m is the same as the number of reduced words of size n in the free group on m generators. In the five sequences A003946, A003948, A003950, A003952, A003954 m is 2, 3, 4, 5, 6. - Avi Peretz (njk(AT)netvision.net.il), Feb 23 2001 and Ola Veshta (olaveshta(AT)my-deja.com), Mar 30 2001
a(n) is the number of nonreversing random walks of the length of n edges on a two-dimensional square lattice, all beginning at a fixed point P. - Pawel P. Mazur (Pawel.Mazur(AT)pwr.wroc.pl), Apr 06 2005
Binomial transform of {1, 3, 5, 11, 21, 43, ...}, see A001045. Binomial transform is {1, 5, 21, 85, 341, 1365, ...}, see A002450. - Philippe Deléham, Jul 22 2005
For n >= 2, a(n) is equal to the number of functions f:{1,2,...,n+1}->{1,2,3} such that for fixed, different x_1, x_2 in {1,2,...,n} and fixed y_1, y_2 in {1,2,3} we have f(x_1) <> y_1 and f(x_2) <> y_2. - Milan Janjic, Apr 19 2007
Equals row sums of triangle A143865. - Gary W. Adamson, Sep 04 2008
Equals INVERT transform of the odd integers = 1/(1 - x - 3x^2 - 5x^3 - ...). - Gary W. Adamson, Jul 27 2009
a(n) is the number of generalized compositions of n+1 when there are 2 *i-1 different types of the part i, (i=1,2,...). - Milan Janjic, Aug 26 2010
Number of length-n strings of 4 letters with no two adjacent letters identical. The general case (strings of r letters) is the sequence with g.f. (1+x)/(1-(r-1)*x). - Joerg Arndt, Oct 11 2012
The sequence is the INVERTi transform of A015448: (1, 5, 21, 89, 377, ...). - Gary W. Adamson, Aug 06 2016
Let D(m) = {d(m,i)}, i = 1..q, denote the set of the q divisors of a number m, and consider s1(m) and s2(m) the sums of the divisors that are congruent to 1 and 2 (mod 3) respectively. For n > 0, the sequence a(n) lists the numbers m such that s1(m) = 5 and s2(m) = 2. - Michel Lagneau, Feb 09 2017
a(n) is the number of quaternary sequences of length n such that no two consecutive terms have distance 2. - David Nacin, May 31 2017
Also the number of maximal cliques in the n-Sierpinski gasket graph. - Eric W. Weisstein, Dec 01 2017
Number of 3-permutations of n elements avoiding the patterns 231, 321. See Bonichon and Sun. - Michel Marcus, Aug 19 2022

Examples

			G.f. = 1 + 4*x + 12*x^2 + 36*x^3 + 108*x^4 + 324*x^5 + 972*x^6 + 2916*x^7 + ...
		

Crossrefs

Cf. A029653, A143865, column 4 in A265583, A015448.

Programs

Formula

a(n) = floor(4*3^(n-1)). - Michael Somos, Jun 18 2002
a(n) = Sum_{k=0..n} A029653(n, k)*x^k for x = 2. - Philippe Deléham, Jul 10 2005
The Hankel transform of this sequence is [1,-4,0,0,0,0,0,0,0,0,...]. - Philippe Deléham, Nov 21 2007
a(n + 1) = (((1 + sqrt(-11))/2)^n + ((1 - sqrt(-11))/2)^n)^2 - (((1 + sqrt(-11))/2)^n - ((1 - sqrt(-11))/2)^n)^2. - Raphie Frank, Dec 07 2015
From Mario C. Enriquez, Apr 01 2017: (Start)
(L(a(n+k)) - 1)/a(n) reduces to the form C/a(n-1), where n > 1, k >= 0, L(a(n)) is the a(n)-th Lucas number and C = (L(a(n+k)) - 1)/3.
(L(a(n+k)) - 1)/3 mod (L(a(n)) - 1)/3 = (L(a(n)) - 1)/3 - 1, where n >= 1, k >= 0 and L(a(n)) is the a(n)-th Lucas number. (End)
E.g.f.: (4*exp(3*x) - 1)/3. - Stefano Spezia, Jan 31 2025

Extensions

Additional comments from Michael Somos, Jun 18 2002
Edited by N. J. A. Sloane, Dec 04 2009

A023001 a(n) = (8^n - 1)/7.

Original entry on oeis.org

0, 1, 9, 73, 585, 4681, 37449, 299593, 2396745, 19173961, 153391689, 1227133513, 9817068105, 78536544841, 628292358729, 5026338869833, 40210710958665, 321685687669321, 2573485501354569, 20587884010836553, 164703072086692425
Offset: 0

Views

Author

Keywords

Comments

Gives the (zero-based) positions of odd terms in A007556 (numbers n such that A007556(a(n)) mod 2 = 1). - Farideh Firoozbakht, Jun 13 2003
{1, 9, 73, 585, 4681, ...} is the binomial transform of A003950. - Philippe Deléham, Jul 22 2005
Let A be the Hessenberg matrix of order n, defined by: A[1,j]=1, A[i,i]:=8, (i>1), A[i,i-1]=-1, and A[i,j]=0 otherwise. Then, for n >= 1, a(n) = det(A). - Milan Janjic, Feb 21 2010
Let A be the Hessenberg matrix of order n, defined by: A[1,j]=1, A[i,i]:=9, (i>1), A[i,i-1]=-1, and A[i,j]=0 otherwise. Then, for n >= 1, a(n-1) = (-1)^n*charpoly(A,1). - Milan Janjic, Feb 21 2010
This is the sequence A(0,1;7,8;2) = A(0,1;8,0;1) of the family of sequences [a,b:c,d:k] considered by G. Detlefs, and treated as A(a,b;c,d;k) in the W. Lang link given below. - Wolfdieter Lang, Oct 18 2010
a(n) is the total number of squares the carpetmaker has removed after the n-th step of a Sierpiński carpet production. - Ivan N. Ianakiev, Oct 22 2013
For n >= 1, a(n) is the total number of holes in a box fractal (start with 8 boxes, 1 hole) after n iterations. See illustration in link. - Kival Ngaokrajang, Jan 27 2015
From Bernard Schott, May 01 2017: (Start)
Except for 0, 1 and 73, all the terms are composite because a(n) = ((2^n - 1) * (4^n + 2^n + 1))/7.
For n >= 3, all terms are Brazilian repunits numbers in base 8, and so belong to A125134.
a(3) = 73 is the only Brazilian prime in base 8, and so it belongs to A085104 and A285017. (End)

Examples

			From _Zerinvary Lajos_, Jan 14 2007: (Start)
Octal.............decimal
0....................0
1....................1
11...................9
111.................73
1111...............585
11111.............4681
111111...........37449
1111111.........299593
11111111.......2396745
111111111.....19173961
1111111111...153391689
etc. ...............etc. (End)
a(4) = (8^4 - 1)/7 = 585 = 1111_8 = (2^4 - 1) * (4^4 + 2^4 + 1)/7 = 15 * 273/7 = 15 * 39. - _Bernard Schott_, May 01 2017
		

Crossrefs

Programs

Formula

Also sum of cubes of divisors of 2^(n-1): a(n) = A001158(A000079(n-1)). - Labos Elemer, Apr 10 2003 and Farideh Firoozbakht, Jun 13 2003
a(n) = A033138(3n-2). - Alexandre Wajnberg, May 31 2005
From Philippe Deléham, Oct 12 2006: (Start)
a(0) = 0, a(n) = 8*a(n-1) + 1 for n>0.
G.f.: x/((1-8x)*(1-x)). (End)
From Wolfdieter Lang, Oct 18 2010: (Start)
a(n) = 7*a(n-1) + 8*a(n-2) + 2, a(0)=0, a(1)=1.
a(n) = 8*a(n-1) + a(n-2) - 8*a(n-3) = 9*a(n-1) - 8*a(n-2), a(0)=0, a(1)=1, a(2)=9. Observation by Gary Detlefs. See the W. Lang comment and link. (End)
a(n) = Sum_{k=0..n-1} 8^k. - Doug Bell, May 26 2017
E.g.f.: exp(x)*(exp(7*x) - 1)/7. - Stefano Spezia, Mar 11 2023

A003948 Expansion of (1+x)/(1-5*x).

Original entry on oeis.org

1, 6, 30, 150, 750, 3750, 18750, 93750, 468750, 2343750, 11718750, 58593750, 292968750, 1464843750, 7324218750, 36621093750, 183105468750, 915527343750, 4577636718750, 22888183593750, 114440917968750, 572204589843750, 2861022949218750, 14305114746093750
Offset: 0

Views

Author

Keywords

Comments

Coordination sequence for infinite tree with valency 6.
The n-th term of the coordination sequence of the infinite tree with valency 2m is the same as the number of reduced words of size n in the free group on m generators. In the five sequences A003946, A003948, A003950, A003952, A003954, m is 2, 3, 4, 5, 6. - Avi Peretz (njk(AT)netvision.net.il), Feb 23 2001 and Ola Veshta (olaveshta(AT)my-deja.com), Mar 30 2001
Hamiltonian path in S_4 X P_2n.
For n>=1, a(n+1) is equal to the number of functions f:{1,2,...,n+1}->{1,2,3,4,5,6} such that for fixed, different x_1, x_2,...,x_n in {1,2,...,n+1} and fixed y_1, y_2,...,y_n in {1,2,3,4,5,6} we have f(x_i)<>y_i, (i=1..n). - Milan Janjic, May 10 2007
For n>=1, a(n) equals the numbers of words of length n over the alphabet {0..5} with no two adjacent letters identical. - Milan Janjic, Jan 31 2015 [Corrected by David Nacin, May 30 2017]
a(n) equals the numbers of sequences of length n on {0,...,5} where no two adjacent terms differ by three. - David Nacin, May 30 2017
It appears that these are the only n>1 for which alpha(n)=2n, where alpha(n) is the entry point of n in the Fibonacci sequence, see A001177. - Philippe Schnoebelen, Apr 11 2024

Crossrefs

Programs

  • GAP
    Concatenation([1], List([1..30], n-> 6*5^(n-1) )); # G. C. Greubel, Sep 24 2019
  • Magma
    [1] cat [6*5^(n-1): n in [1..30]]; // G. C. Greubel, Sep 24 2019
    
  • Maple
    k := 6; if n = 0 then 1 else k*(k-1)^(n-1); fi;
  • Mathematica
    q = 6; Join[{a = 1}, Table[If[n != 0, a = q*a - a, a = q*a], {n, 0, 25}]] (* and *) Join[{1}, 6*5^Range[0, 25]] (* Vladimir Joseph Stephan Orlovsky, Jul 11 2011 *)
    Join[{1},NestList[5#&,6,30]] (* Harvey P. Dale, Dec 31 2013 *)
    CoefficientList[Series[(1+x)/(1-5x), {x,0,30}], x] (* Michael De Vlieger, Dec 10 2016 *)
  • PARI
    Vec((1+x)/(1-5*x)+O(x^30)) \\ Charles R Greathouse IV, Nov 20 2012
    
  • Sage
    [1]+[6*5^(n-1) for n in (1..30)] # G. C. Greubel, Sep 24 2019
    

Formula

G.f.: (1+x)/(1-5*x).
a(n) = Sum_{k=0..n} A029653(n, k)*x^k for x = 4. - Philippe Deléham, Jul 10 2005
The Hankel transform of this sequence is [1,-6,0,0,0,0,0,0,0,0,...]. - Philippe Deléham, Nov 21 2007
a(n) = 6*5^(n-1) for n>0, a(0)=1. - Vincenzo Librandi, Nov 18 2010
G.f.: 2/x - 5 - 8/(x*U(0)) where U(k)= 1 + 2/(3^k - 3^k/(2 + 1 - 12*x*3^k/(6*x*3^k + 1/U(k+1)))) ; (continued fraction, 4-step). - Sergei N. Gladkovskii, Oct 30 2012
E.g.f.: (6*exp(5*x) - 1)/5. - Ilya Gutkovskiy, Dec 10 2016
Sum_{n>=0} 1/a(n) = 29/24. - Bernard Schott, Oct 25 2021

Extensions

Definition corrected by Frans J. Faase, Feb 07 2009
Edited by N. J. A. Sloane, Dec 04 2009

A003949 Expansion of g.f. (1+x)/(1-6*x).

Original entry on oeis.org

1, 7, 42, 252, 1512, 9072, 54432, 326592, 1959552, 11757312, 70543872, 423263232, 2539579392, 15237476352, 91424858112, 548549148672, 3291294892032, 19747769352192, 118486616113152, 710919696678912, 4265518180073472, 25593109080440832, 153558654482644992
Offset: 0

Views

Author

Keywords

Comments

Coordination sequence for infinite tree with valency 7.
For n >= 1, a(n+1) is equal to the number of functions f:{1,2,...,n+1}->{1,2,3,4,5,6,7} such that for fixed, different x_1, x_2,...,x_n in {1,2,...,n+1} and fixed y_1, y_2,...,y_n in {1,2,3,4,5,6,7} we have f(x_i)<>y_i, (i=1,2,...,n). - Milan Janjic, May 10 2007
For n >= 1, a(n) equals the numbers of words of length n-1 on alphabet {0,1,2,3,5,6} with no two adjacent letters identical. - Milan Janjic, Jan 31 2015

Crossrefs

Programs

  • GAP
    k:=7;; Concatenation([1], List([1..25], n-> k*(k-1)^(n-1) )); # G. C. Greubel, Sep 24 2019
  • Magma
    k:=7; [1] cat [k*(k-1)^(n-1): n in [1..25]]; // G. C. Greubel, Sep 24 2019
    
  • Magma
    R:=PowerSeriesRing(Rationals(), 25); Coefficients(R!( (1+x)/(1-6*x))); // Marius A. Burtea, Jan 20 2020
    
  • Maple
    k:=7; seq(`if`(n=0, 1, k*(k-1)^(n-1)), n = 0..25); # modified by G. C. Greubel, Sep 24 2019
  • Mathematica
    q = 7; Join[{a = 1}, Table[If[n != 0, a = q*a - a, a = q*a], {n, 0, 25}]] (* or *) Join[{1}, 7*6^Range[0, 25]] (* Vladimir Joseph Stephan Orlovsky, Jul 11 2011 *)
    CoefficientList[Series[(1+x)/(1-6*x), {x, 0, 30}], x] (* Vincenzo Librandi, Dec 10 2012 *)
    LinearRecurrence[{6},{1,7},30] (* or *) Join[{1},NestList[6#&,7,30]] (* Harvey P. Dale, May 03 2025 *)
  • PARI
    a(n)=if(n,7*6^(n-1),1) \\ Charles R Greathouse IV, Mar 22 2016
    
  • Sage
    k=7; [1]+[k*(k-1)^(n-1) for n in (1..25)] # G. C. Greubel, Sep 24 2019
    

Formula

G.f.: (1+x)/(1-6*x).
a(n) = Sum_{k=0..n} A029653(n, k)*x^k for x = 5. - Philippe Deléham, Jul 10 2005
a(0)=1; for n > 0, a(n) = 7*6^(n-1). - Vincenzo Librandi, Nov 18 2010
a(0)=1, a(1)=7, a(n) = 6*a(n-1). - Vincenzo Librandi, Dec 10 2012
E.g.f.: (7*exp(6*x) - 1)/6. - G. C. Greubel, Sep 24 2019

Extensions

Edited by N. J. A. Sloane, Dec 04 2009

A003952 Expansion of g.f.: (1+x)/(1-9*x).

Original entry on oeis.org

1, 10, 90, 810, 7290, 65610, 590490, 5314410, 47829690, 430467210, 3874204890, 34867844010, 313810596090, 2824295364810, 25418658283290, 228767924549610, 2058911320946490, 18530201888518410, 166771816996665690, 1500946352969991210, 13508517176729920890
Offset: 0

Views

Author

N. J. A. Sloane, Mar 15 1996

Keywords

Comments

Coordination sequence for infinite tree with valency 10.
The n-th term of the coordination sequence of the infinite tree with valency 2m is the same as the number of reduced words of size n in the free group on m generators. In the five sequences A003946, A003948, A003950, A003952, A003954 m is 2, 3, 4, 5, 6 . - Avi Peretz (njk(AT)netvision.net.il), Feb 23 2001 and Ola Veshta (olaveshta(AT)my-deja.com), Mar 30 2001
Except 1, all terms are in A033583. - Vincenzo Librandi, May 26 2014
For n>=1, a(n) equals the number of words of length n on alphabet {0,1,...,9} with no two adjacent letters identical. - Milan Janjic, Jan 31 2015 [Corrected by David Nacin, May 31 2017]
a(n) is the number of sequences over the alphabet {0,1,...,9} of length n such that no two consecutive terms have distance 5. - David Nacin, May 31 2017

Crossrefs

Programs

Formula

a(n) = (10*9^n - 0^n)/9. Binomial transform is A000042. - Paul Barry, Jan 29 2004
G.f.: (1+x)/(1-9*x). - Philippe Deléham, Jan 31 2004
a(n) = Sum_{k=0..n} A029653(n, k)*x^k for x = 8. - Philippe Deléham, Jul 10 2005
The Hankel transform of this sequence is: [1,-10,0,0,0,0,0,0,0,...]. - Philippe Deléham, Nov 21 2007
E.g.f.: (10*exp(9*x) - 1)/9. - G. C. Greubel, Sep 24 2019

Extensions

Edited by N. J. A. Sloane, Dec 04 2009

A003954 Expansion of g.f.: (1+x)/(1-11*x).

Original entry on oeis.org

1, 12, 132, 1452, 15972, 175692, 1932612, 21258732, 233846052, 2572306572, 28295372292, 311249095212, 3423740047332, 37661140520652, 414272545727172, 4556998002998892, 50126978032987812, 551396758362865932, 6065364341991525252, 66719007761906777772, 733909085380974555492
Offset: 0

Views

Author

Keywords

Comments

Coordination sequence for infinite tree with valency 12.
The n-th term of the coordination sequence of the infinite tree with valency 2m is the same as the number of reduced words of size n in the free group on m generators. In the five sequences A003946, A003948, A003950, A003952, A003954 m is 2, 3, 4, 5, 6 . - Avi Peretz (njk(AT)netvision.net.il), Feb 23 2001 and Ola Veshta (olaveshta(AT)my-deja.com), Mar 30 2001.
For n>=1, a(n) equals the numbers of words of length n-1 on alphabet {0,1,...,11} with no two adjacent letters identical. - Milan Janjic, Jan 31 2015

Crossrefs

Programs

Formula

a(n) = Sum_{k=0..n} A029653(n,k)*x^k for x = 10. - Philippe Deléham, Jul 10 2005
G.f.: (1+x)/(1-11*x). The Hankel transform of this sequence is [1,-12,0,0,0,0,0,0,0,...]. - Philippe Deléham, Nov 21 2007
a(0) = 1; for n>0, a(n) = 12*11^(n-1). - Vincenzo Librandi, Nov 18 2010
a(0) = 1, a(1)=12, a(n) = 11*a(n-1). - Vincenzo Librandi, Dec 10 2012
E.g.f.: (12*exp(11*x) - 1)/11. - Elmo R. Oliveira, Mar 24 2025

Extensions

Edited by N. J. A. Sloane, Dec 04 2009

A250956 T(n,k)=Number of (n+1)X(k+1) 0..1 arrays with no 2X2 subblock having its maximum diagonal element less than its minimum antidiagonal element.

Original entry on oeis.org

15, 56, 56, 209, 392, 209, 780, 2744, 2744, 780, 2911, 19208, 36016, 19208, 2911, 10864, 134456, 472712, 472712, 134456, 10864, 40545, 941192, 6204344, 11633448, 6204344, 941192, 40545, 151316, 6588344, 81431944, 286298344, 286298344
Offset: 1

Views

Author

R. H. Hardin, Nov 28 2014

Keywords

Comments

Table starts
.....15.......56.........209...........780.............2911..............10864
.....56......392........2744.........19208...........134456.............941192
....209.....2744.......36016........472712..........6204344...........81431944
....780....19208......472712......11633448........286298344.........7045780240
...2911...134456.....6204344.....286298344......13211127617.......609622239024
..10864...941192....81431944....7045780240.....609622239024.....52746349035592
..40545..6588344..1068793208..173396103624...28130774228952...4563772381621072
.151316.46118408.14027896712.4267264603784.1298083303266168.394871276236514256

Examples

			Some solutions for n=3 k=4
..0..0..1..0..1....0..1..0..0..0....0..0..0..1..1....0..1..0..1..1
..0..0..0..1..1....0..1..1..1..0....0..1..0..0..0....0..1..0..0..0
..0..1..1..1..0....0..0..0..1..1....0..0..1..0..0....0..0..0..0..0
..0..0..1..1..0....1..1..0..0..1....1..0..1..0..1....0..1..0..0..1
		

Crossrefs

Column 1 is A001353(n+2)
Column 2 is A003950(n+1)

Formula

Empirical for column k:
k=1: a(n) = 4*a(n-1) -a(n-2)
k=2: a(n) = 7*a(n-1)
k=3: a(n) = 15*a(n-1) -24*a(n-2) -8*a(n-3)
k=4: a(n) = 27*a(n-1) -57*a(n-2) -46*a(n-3) +30*a(n-4)
k=5: [order 7]
k=6: [order 9]
k=7: [order 16]

A158497 Triangle T(n,k) formed by the coordination sequences and the number of leaves for trees.

Original entry on oeis.org

1, 1, 1, 1, 2, 2, 1, 3, 6, 12, 1, 4, 12, 36, 108, 1, 5, 20, 80, 320, 1280, 1, 6, 30, 150, 750, 3750, 18750, 1, 7, 42, 252, 1512, 9072, 54432, 326592, 1, 8, 56, 392, 2744, 19208, 134456, 941192, 6588344, 1, 9, 72, 576, 4608, 36864, 294912, 2359296, 18874368, 150994944, 1, 10, 90, 810, 7290, 65610, 590490, 5314410, 47829690, 430467210, 3874204890
Offset: 0

Views

Author

Thomas Wieder, Mar 20 2009

Keywords

Comments

Consider the k-fold Cartesian products CP(n,k) of the vector A(n) = [1, 2, 3, ..., n].
An element of CP(n,k) is a n-tuple T_t of the form T_t = [i_1, i_2, i_3, ..., i_k] with t=1, .., n^k.
We count members T of CP(n,k) which satisfy some condition delta(T_t), so delta(.) is an indicator function which attains values of 1 or 0 depending on whether T_t is to be counted or not; the summation sum_{CP(n,k)} delta(T_t) over all elements T_t of CP produces the count.
For the triangle here we have delta(T_t) = 0 if for any two i_j, i_(j+1) in T_t one has i_j = i_(j+1): T(n,k) = Sum_{CP(n,k)} delta(T_t) = Sum_{CP(n,k)} delta(i_j = i_(j+1)).
The test on i_j > i_(j+1) generates A158498. One gets the Pascal triangle A007318 if the indicator function tests whether for any two i_j, i_(j+1) in T_t one has i_j >= i_(j+1).
Use of other indicator functions can also calculate the Bell numbers A000110, A000045 or A000108.

Examples

			Array, A(n, k) = n*(n-1)^(k-1) for n > 1, A(n, k) = 1 otherwise, begins as:
  1,  1,   1,    1,     1,      1,       1,        1,        1, ... A000012;
  1,  1,   1,    1,     1,      1,       1,        1,        1, ... A000012;
  1,  2,   2,    2,     2,      2,       2,        2,        2, ... A040000;
  1,  3,   6,   12,    24,     48,      96,      192,      384, ... A003945;
  1,  4,  12,   36,   108,    324,     972,     2916,     8748, ... A003946;
  1,  5,  20,   80,   320,   1280,    5120,    20480,    81920, ... A003947;
  1,  6,  30,  150,   750,   3750,   18750,    93750,   468750, ... A003948;
  1,  7,  42,  252,  1512,   9072,   54432,   326592,  1959552, ... A003949;
  1,  8,  56,  392,  2744,  19208,  134456,   941192,  6588344, ... A003950;
  1,  9,  72,  576,  4608,  36864,  294912,  2359296, 18874368, ... A003951;
  1, 10,  90,  810,  7290,  65610,  590490,  5314410, 47829690, ... A003952;
  1, 11, 110, 1100, 11000, 110000, 1100000, 11000000, ............. A003953;
  1, 12, 132, 1452, 15972, 175692, 1932612, 21258732, ............. A003954;
  1, 13, 156, 1872, 22464, 269568, 3234816, 38817792, ............. A170732;
  ... ;
The triangle begins as:
  1
  1, 1;
  1, 2,  2;
  1, 3,  6,  12;
  1, 4, 12,  36,  108;
  1, 5, 20,  80,  320,  1280;
  1, 6, 30, 150,  750,  3750,  18750;
  1, 7, 42, 252, 1512,  9072,  54432, 326592;
  1, 8, 56, 392, 2744, 19208, 134456, 941192, 6588344;
  ...;
T(3,3) = 12 counts the triples (1,2,1), (1,2,3), (1,3,1), (1,3,2), (2,1,2), (2,1,3), (2,3,1), (2,3,2), (3,1,2), (3,1,3), (3,2,1), (3,2,3) out of a total of 3^3 = 27 triples in the CP(3,3).
		

Crossrefs

Array rows n: A170733 (n=14), ..., A170769 (n=50).
Columns k: A000012(n) (k=0), A000027(n) (k=1), A002378(n-1) (k=2), A011379(n-1) (k=3), A179824(n) (k=4), A101362(n-1) (k=5), 2*A168351(n-1) (k=6), 2*A168526(n-1) (k=7), 2*A168635(n-1) (k=8), 2*A168675(n-1) (k=9), 2*A170783(n-1) (k=10), 2*A170793(n-1) (k=11).
Diagonals k: A055897 (k=n), A055541 (k=n-1), A373395 (k=n-2), A379612 (k=n-3).
Sums: (-1)^n*A065440(n) (signed row).

Programs

  • Magma
    A158497:= func< n,k | k le 1 select n^k else n*(n-1)^(k-1) >;
    [A158497(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Mar 18 2025
    
  • Mathematica
    A158497[n_, k_]:= If[n<2 || k==0, 1, n*(n-1)^(k-1)];
    Table[A158497[n,k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Mar 18 2025 *)
  • SageMath
    def A158497(n,k): return n^k if k<2 else n*(n-1)^(k-1)
    print(flatten([[A158497(n,k) for k in range(n+1)] for n in range(13)])) # G. C. Greubel, Mar 18 2025

Formula

T(n, k) = (n-1)^(k-1) + (n-1)^k = n*A079901(n-1,k-1), k > 0.
Sum_{k=0..n} T(n,k) = (n*(n-1)^n - 2)/(n-2), n > 2.

Extensions

Edited by R. J. Mathar, Mar 31 2009
More terms added by G. C. Greubel, Mar 18 2025
Showing 1-10 of 58 results. Next