cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A003959 If n = Product p(k)^e(k) then a(n) = Product (p(k)+1)^e(k), a(1) = 1.

Original entry on oeis.org

1, 3, 4, 9, 6, 12, 8, 27, 16, 18, 12, 36, 14, 24, 24, 81, 18, 48, 20, 54, 32, 36, 24, 108, 36, 42, 64, 72, 30, 72, 32, 243, 48, 54, 48, 144, 38, 60, 56, 162, 42, 96, 44, 108, 96, 72, 48, 324, 64, 108, 72, 126, 54, 192, 72, 216, 80, 90, 60, 216, 62, 96, 128, 729, 84, 144, 68
Offset: 1

Views

Author

Keywords

Comments

Completely multiplicative.
Sum of divisors of n with multiplicity. If n = p^m, the number of ways to make p^k as a divisor of n is C(m,k); and sum(C(m,k)*p^k) = (p+1)^k. The rest follows because the function is multiplicative. - Franklin T. Adams-Watters, Jan 25 2010

Crossrefs

Programs

  • Haskell
    a003959 1 = 1
    a003959 n = product $ map (+ 1) $ a027746_row n
    -- Reinhard Zumkeller, Apr 09 2012
  • Maple
    a:= n-> mul((i[1]+1)^i[2], i=ifactors(n)[2]):
    seq(a(n), n=1..80);  # Alois P. Heinz, Sep 13 2017
  • Mathematica
    a[1] = 1; a[n_] := (fi = FactorInteger[n]; Times @@ ((fi[[All, 1]]+1)^fi[[All, 2]])); a /@ Range[67] (* Jean-François Alcover, Apr 22 2011 *)
  • PARI
    a(n)=if(n<1,0,direuler(p=2,n,1/(1-X-p*X))[n]) /* Ralf Stephan */
    

Formula

Multiplicative with a(p^e) = (p+1)^e. - David W. Wilson, Aug 01 2001
Sum_{n>0} a(n)/n^s = Product_{p prime} 1/(1-p^(-s)-p^(1-s)) (conjectured). - Ralf Stephan, Jul 07 2013
This follows from the absolute convergence of the sum (compare with a(n) = n^2) and the Euler product for completely multiplicative functions. Convergence occurs for at least Re(s)>3. - Thomas Anton, Jul 15 2021
Sum_{k=1..n} a(k) ~ c * n^2, where c = A065488/2 = 1/(2*A005596) = 1.3370563627850107544802059152227440187511993141988459926... - Vaclav Kotesovec, Jul 17 2021
From Thomas Scheuerle, Jul 19 2021: (Start)
a(n) = gcd(A166642(n), A166643(n)).
a(n) = A166642(n)/A061142(n).
a(n) = A166643(n)/A165824(n).
a(n) = A166644(n)/A165825(n).
a(n) = A166645(n)/A165826(n).
a(n) = A166646(n)/A165827(n).
a(n) = A166647(n)/A165828(n).
a(n) = A166649(n)/A165830(n).
a(n) = A166650(n)/A165831(n).
a(n) = A167351(n)/A166590(n). (End)
Dirichlet g.f.: zeta(s-1) * Product_{primes p} (1 + 1/(p^s - p - 1)). - Vaclav Kotesovec, Aug 22 2021

Extensions

Definition reedited (with formula) by Daniel Forgues, Nov 17 2009