A004044 The classic football pool problem: size of minimal covering code in {0,1,2}^n with covering radius 1.
1, 1, 3, 5, 9, 27
Offset: 0
Examples
An example for a(4) = 9 is {0000, 0112, 0221, 1022, 1101,1210, 2011, 2120, 2202}. - _Robert P. P. McKone_, Jun 27 2021 For a(5) = 27, prepend each of these 9 codewords by 0, 1, and 2. - _Rob Pratt_, Jun 27 2021 van Laarhoven et al. (1989) give examples for a(6), a(7), a(8) which are the best presently known. - _R. J. Mathar_, Jun 29 2021
References
- Cohen, Gérard, Iiro Honkala, Simon Litsyn, and Antoine Lobstein, Covering Codes, North-Holland, 1997, p. 174.
- H. J. L. Kamps and J. H. van Lint. "A covering problem." In Colloq. Math. Soc. Janos Bolyai; Hungar. Combin. Theory and Appl., Balantonfured, Hungary, pp. 679-685, 1969.
Links
- D. Brink, The Inverse Football Pool Problem, J. Int. Seq. 14 (2011) # 11.8.8.
- Hiram Fernandes and Edgar Rechtschaffen, The football pool problem for 7 and 8 matches, Journal of Combinatorial Theory, Series A 35.1 (1983): 109-114.
- W. Haas, Binary and ternary codes of covering radius one: some new lower bounds, Discrete Math. 245 (2002), 161-178.
- H. Hamalainen, Iiro Honkala, Simon Litsyn, and Patric Östergård, Football pools - a game for mathematicians, Amer. Math. Monthly, 102 (1995), 579-588.
- Dmitry Kamenetsky, Best known solutions for n <= 6
- H. J. L. Kamps and J. H. van Lint, The football pool problem for 5 matches, Journal of Combinatorial Theory 3.4 (1967): 315-325.
- G. Keri, Tables for Bounds on Covering Codes
- Klaus-Uwe Koschnick, A new upper bound for the football pool problem for nine matches, Journal of Combinatorial Theory, Series A 62.1 (1993): 162-167.
- Patric R. J. Östergård, New upper bounds for the football pool problem for 11 and 12 matches, Journal of Combinatorial Theory, Series A 67.2 (1994): 161-168.
- P. J. M. van Laarhoven, E. H. L. Aartsa, J. H. van Lint, L. T. Wille, New upper bounds for the football pool problem for 6, 7, and 8 matches, Journal of Combinatorial Theory, Series A, 52(2) (1989), 304-312.
- Ewald W. Weber, On the football pool problem for 6 matches: a new upper bound, Journal of Combinatorial Theory, Series A 35.1 (1983): 106-108.
- L. T. Wille, The football pool problem for 6 matches: a new upper bound obtained by simulated annealing, Journal of Combinatorial Theory, Series A 45.2 (1987): 171-177.
- Index entries for sequences related to covering codes
Crossrefs
First column of A060439.
Extensions
Bounds corrected and corresponding reference added by Jan Kristian Haugland, Mar 10 2010
Edited with more references. - N. J. A. Sloane, Jun 21 2021
Comments