A004116 a(n) = floor((n^2 + 6n - 3)/4).
1, 3, 6, 9, 13, 17, 22, 27, 33, 39, 46, 53, 61, 69, 78, 87, 97, 107, 118, 129, 141, 153, 166, 179, 193, 207, 222, 237, 253, 269, 286, 303, 321, 339, 358, 377, 397, 417, 438, 459
Offset: 1
References
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..10000
- G. Alkauskas, Recursive construction of a series converging to the eigenvalues of the Gauss-Kuzmin-Wirsing operator, arXiv:1004.1783 [math.NT], 2010-2012. See also code.
- R. Alter and J. A. Barnett, A postage stamp problem, Amer. Math. Monthly, 87 (1980), 206-210.
- M. Develin, Maximal triangulations of a regular prism, arXiv:math/0309220 [math.CO], 2003.
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 420.
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992.
- David Singmaster, David Fielker, and N. J. A. Sloane, Correspondence, August 1979.
- Wikipedia, Gauss-Kuzmin-Wirsing operator.
- Index entries for linear recurrences with constant coefficients, signature (2,0,-2,1).
Programs
-
Magma
[Floor( (n^2 + 6*n - 3)/4 ) : n in [1..50]]; // Vincenzo Librandi, Sep 19 2011
-
Maple
A004116:=(-1-z+z**3)/(z+1)/(z-1)**3; # conjectured by Simon Plouffe in his 1992 dissertation
-
Mathematica
Table[Floor[(n^2 + 6 n - 3)/4], {n, 40}] (* or *) LinearRecurrence[{2, 0, -2, 1}, {1, 3, 6, 9}, 40] (* Michael De Vlieger, Jul 19 2016 *)
-
PARI
a(n)=(n^2+6*n-3)>>2
Formula
a(n) = floor((1/4)*n^2 + (3/2)*n + 1/4) - 1.
a(n) = (1/8)*(-1)^(n+1) - 7/8 + (3/2)*n + (1/4)*n^2.
From Ilya Gutkovskiy, Jul 20 2016: (Start)
O.g.f.: x*(1 + x - x^3)/((1 - x)^3*(1 + x)).
E.g.f.: (8 + sinh(x) - cosh(x) + (2*x^2 + 14*x - 7)*exp(x))/8.
a(n) = 2*a(n-1) - 2*a(n-3) + a(n-4).
a(n) = Sum_{k=0..n-1} A266977(k). (End)
Sum_{n>=1} 1/a(n) = 2 + tan(sqrt(13)*Pi/2)*Pi/sqrt(13) - cot(sqrt(3)*Pi)*Pi/(2*sqrt(3)). - Amiram Eldar, Aug 13 2022
Comments