A183869
a(n) = n + floor(sqrt(4*n + 5)); complement of A004116.
Original entry on oeis.org
2, 4, 5, 7, 8, 10, 11, 12, 14, 15, 16, 18, 19, 20, 21, 23, 24, 25, 26, 28, 29, 30, 31, 32, 34, 35, 36, 37, 38, 40, 41, 42, 43, 44, 45, 47, 48, 49, 50, 51, 52, 54, 55, 56, 57, 58, 59, 60, 62, 63, 64, 65, 66, 67, 68, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 88, 89, 90, 91, 92, 93, 94, 95, 96, 98, 99, 100, 101, 102, 103, 104, 105, 106, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 119, 120
Offset: 0
-
a=4; b=5; Table[n+Floor[(a*n+b)^(1/2)],{n,0,100}]
-
a(n) = n + sqrtint(4*n+5); \\ Michel Marcus, Jul 19 2025
A003022
Length of shortest (or optimal) Golomb ruler with n marks.
Original entry on oeis.org
1, 3, 6, 11, 17, 25, 34, 44, 55, 72, 85, 106, 127, 151, 177, 199, 216, 246, 283, 333, 356, 372, 425, 480, 492, 553, 585
Offset: 2
a(5)=11 because 0-1-4-9-11 (0-2-7-10-11) resp. 0-3-4-9-11 (0-2-7-8-11) are shortest: there is no b0-b1-b2-b3-b4 with different distances |bi-bj| and max. |bi-bj| < 11.
- CRC Handbook of Combinatorial Designs, 1996, p. 315.
- A. K. Dewdney, Computer Recreations, Scientific Amer. 253 (No. 6, Jun), 1985, pp. 16ff; 254 (No. 3, March), 1986, pp. 20ff.
- S. W. Golomb, How to number a graph, pp. 23-37 of R. C. Read, editor, Graph Theory and Computing. Academic Press, NY, 1972.
- Richard K. Guy, Unsolved Problems in Number Theory (2nd edition), Springer-Verlag (1994), Section C10.
- A. Kotzig and P. J. Laufer, Sum triangles of natural numbers having minimum top, Ars. Combin. 21 (1986), 5-13.
- Miller, J. C. P., Difference bases. Three problems in additive number theory. Computers in number theory (Proc. Sci. Res. Council Atlas Sympos. No. 2, Oxford, 1969), pp. 299--322. Academic Press, London,1971. MR0316269 (47 #4817)
- Rhys Price Jones, Gracelessness, Proc. 10th S.-E. Conf. Combin., Graph Theory and Computing, 1979, pp. 547-552.
- Ana Salagean, David Gardner and Raphael Phan, Index Tables of Finite Fields and Modular Golomb Rulers, in Sequences and Their Applications - SETA 2012, Lecture Notes in Computer Science. Volume 7280, 2012, pp. 136-147.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Anonymous, In Search Of The Optimal 20, 21 and 22 Mark Golomb Rulers
- Thomas Bloom, Problem 30, Problem 43, Problem 155, and Problem 861, Erdős Problems.
- A. K. Dewdney, Computer Recreations, Scientific Amer. 253 (No. 6, Jun), 1985, pp. 16ff; 254 (No. 3, March), 1986, pp. 20ff. [Annotated scanned copy]
- Distributed.Net, Project OGR
- Kent Freeman, Unpublished notes. [Scanned copy]
- Michael Geißer, Theresa Körner, Sascha Kurz, and Anne Zahn, Squares with three digits, arXiv:2112.00444 [math.NT], 2021.
- S. W. Golomb, Letter to N. J. A. Sloane, 1972.
- A. Kotzig and P. J. Laufer, Sum triangles of natural numbers having minimum top, Ars. Combin. 21 (1986), 5-13. [Annotated scanned copy]
- Joseph Malkevitch, Weird Rulers.
- Greg Martin and Kevin O'Bryant, Constructions of generalized Sidon sets, arXiv:math/0408081 [math.NT], 2004-2005.
- Lloyd Miller, Golomb Rulers
- Kevin O'Bryant, Sets of Natural Numbers with Proscribed Subsets, J. Int. Seq. 18 (2015) # 15.7.7
- Ed Pegg, Jr., Math Games: Rulers, Arrays, and Gracefulness
- Bill Rankin, Golomb Ruler Calculations
- Walter Schneider, Golomb Rulers
- James B. Shearer, Golomb ruler table
- James B. Shearer, Table of Known Optimal Golomb Rulers
- James B. Shearer, Difference Triangle Sets: Known optimal solutions.
- James B. Shearer, Difference Triangle Sets: Discoverers
- David Singmaster, David Fielker, and N. J. A. Sloane, Correspondence, August 1979
- N. J. A. Sloane, First few optimal Golomb rulers
- Terence Tao, Erdős problem database, see nos. 30, 43, 155, 861.
- D. Vanderschel et al., In Search Of The Optimal 20, 21 and 22 Mark Golomb Rulers
- Eric Weisstein's World of Mathematics, Golomb Ruler.
- Wikipedia, Golomb ruler
- Index entries for sequences related to Golomb rulers
0-1-4-9-11 corresponds to 1-3-5-2 in
A039953: 0+1+3+5+2=11
A row or column of array in
A234943.
-
Min@@Total/@#&/@GatherBy[Select[Join@@Permutations/@Join@@Table[IntegerPartitions[i],{i,0,15}],UnsameQ@@ReplaceList[#,{_,s__,_}:>Plus[s]]&],Length] (* Gus Wiseman, May 17 2019 *)
-
from itertools import combinations, combinations_with_replacement, count
def a(n):
for k in count(n-1):
for c in combinations(range(k), n-1):
c = c + (k, )
ss = set()
for s in combinations_with_replacement(c, 2):
if sum(s) in ss: break
else: ss.add(sum(s))
if len(ss) == n*(n+1)//2: return k # Jianing Song, Feb 14 2025, adapted from the python program of A345731
a(25), a(26) proved by OGR-25 and OGR-26 projects, added by
Max Alekseyev, Sep 29 2010
A014616
a(n) = solution to the postage stamp problem with 2 denominations and n stamps.
Original entry on oeis.org
2, 4, 7, 10, 14, 18, 23, 28, 34, 40, 47, 54, 62, 70, 79, 88, 98, 108, 119, 130, 142, 154, 167, 180, 194, 208, 223, 238, 254, 270, 287, 304, 322, 340, 359, 378, 398, 418, 439, 460, 482, 504, 527, 550, 574, 598, 623, 648, 674, 700, 727, 754, 782, 810, 839, 868
Offset: 1
Bisymmetric matrix B_5, with B_5[1,1] and B_5[5,5] fixed, have a(3) free entries: for rows 1 and 2: each 3, row 3: 1, altogether 3 + 3 + 1 = 7 = a(5-2). Mark the corresponding matrix entries with x, and obtain a pattern symmetric around the central vertical. - _Wolfdieter Lang_, Aug 16 2015
- Richard K. Guy, Unsolved Problems in Number Theory, 3rd Edition, Springer, 2004, Section C12, pp. 185-190.
- Vincenzo Librandi, Table of n, a(n) for n = 1..10000
- Mario Bravo, Thierry Champion, and Roberto Cominetti, Universal bounds for fixed point iterations via optimal transport metrics, arXiv:2108.00300 [math.OC], 2021.
- Erich Friedman, Postage stamp problem
- W. F. Lunnon, A postage stamp problem, Comput. J. 12 (1969) 377-380.
- Alfred Stöhr, Gelöste und ungelöste Fragen über Basen der natürlichen Zahlenreihe. I., Journal für die reine und angewandte Mathematik (1955), Volume: 194, page 40-65. See p. 47.
- Hugh Thomas and Stephanie van Willigenburg, Compact symmetric solutions to the postage stamp problem, arXiv:0706.3250 [math.NT], 2007-2008.
- Amitabha Tripathi, A Note on the Postage Stamp Problem, Journal of Integer Sequences, Vol. 9 (2006), Article 06.1.3.
- Eric Weisstein's World of Mathematics, Postage stamp problem.
- Index entries for linear recurrences with constant coefficients, signature (2,0,-2,1).
- Index to sequences related to the Postage Stamp Problem.
A row or column of the array
A196416 (possibly with 1 subtracted from it).
-
a014616 n = (n * (n + 6) + 1) `div` 4 -- Reinhard Zumkeller, Apr 07 2013
-
[(2*n*(n+6)-(-1)^n+1)/8: n in [1..60]]; // Vincenzo Librandi, Jul 09 2011
-
a[n_?OddQ] := (n^2 + 6*n + 1)/4; a[n_?EvenQ] := n*(n + 6)/4; Table[a[n], {n, 1, 56}] (* Jean-François Alcover, Dec 14 2011, after first formula *)
LinearRecurrence[{2,0,-2,1},{2,4,7,10},60] (* Harvey P. Dale, Oct 04 2015 *)
-
a(n)=(n^2 + 6*n + 1)\4 \\ Charles R Greathouse IV, Feb 06 2017
Entry improved by comments from John Seldon (johnseldon(AT)onetel.com), Sep 15 2004
A004137
Maximal number of edges in a graceful graph on n nodes.
Original entry on oeis.org
0, 1, 3, 6, 9, 13, 17, 23, 29, 36, 43, 50, 58, 68, 79, 90, 101, 112, 123, 138, 153, 168, 183, 198, 213, 232
Offset: 1
a(7)=17: Label the 7 nodes 0,1,8,11,13,15,17 and include all edges except those from 8 to 15, from 13 to 15, from 13 to 17 and from 15 to 17. {0,1,8,11,13,15,17} is a restricted difference basis w.r.t. 17.
a(21)=153 because there exists a complete ruler (i.e., one that can measure every distance between 1 and 153) with marks [0,1,2,3,7,14,21,28,43,58,73,88,103,118,126,134,142,150,151,152,153] and no complete ruler of greater length with the same number of marks can be found. This ruler is of the type described by B. Wichmann and it is conjectured by _Peter Luschny_ that it is impossible to improve upon Wichmann's construction for finding optimal rulers of bigger lengths.
- J.-C. Bermond, Graceful graphs, radio antennae and French windmills, pp. 18-37 of R. J. Wilson, editor, Graph Theory and Combinatorics. Pitman, London, 1978.
- R. K. Guy, Modular difference sets and error correcting codes. in: Unsolved Problems in Number Theory, 3rd ed. New York: Springer-Verlag, chapter C10, (2004), 181-183.
- J. C. P. Miller, Difference bases: Three problems in additive number theory, pp. 299-322 of A. O. L. Atkin and B. J. Birch, editors, Computers in Number Theory. Academic Press, NY, 1971.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- D. Beutner and H. Harborth, Graceful labelings of Nearly Complete Graphs, Results Math. 41 (2002) 34-39.
- G. S. Bloom and S. W. Golomb, Applications of numbered undirected graphs, Proc. IEEE 65 (1977), 562-570.
- G. S. Bloom and S. W. Golomb, Numbered complete graphs, unusual rulers, and assorted applications, Theory and Applications of Graphs, Lecture Notes in Math. 642, (1978), 53-65.
- L. Egidi and G. Manzini, Spaced seeds design using perfect rulers, Tech. Rep. CS Department Universita del Piemonte Orientale, June 2011.
- P. Erdős, A survey of problems in combinatorial number theory, Ann. Discrete Math. 6 (1980), 89-115.
- P. Erdős and R. Freud, On sums of a Sidon-sequence, J. Number Theory 38 (1991), 196-205.
- P. Erdős and P. Turán, On a problem of Sidon in additive number theory, and on some related problems, J. Lond. Math. Soc. 16 (1941), 212-215.
- J. Leech, On the representation of 1, 2, ..., n by differences, J. Lond. Math. Soc. 31 (1956), 160-169.
- S. Lou and Q. Yao, A Chebyshev's type of prime number theorem in a short interval II, Hardy-Ramanujan J. 15 (1992), 1-33.
- Peter Luschny, Perfect Rulers.
- Peter Luschny, Wichmann Rulers.
- Klaus Nagel, Evaluation of perfect rulers C program.
- O. Pikhurko, Dense edge-magic graphs and thin additive bases, Discrete Math. 306 (2006), 2097-2107.
- O. Pikhurko and T. Schoen, Integer Sets Having the Maximum Number of Distinct Differences, Integers: Electronic journal of combinatorial number theory 7 (2007).
- I. Redéi and A. Rényi, On the representation of integers 1, 2, ..., n by differences, Mat. Sbornik 24 (1949), 385-389 (Russian).
- Arch D. Robison, Parallel Computation of Sparse Rulers, Jan 14 2014.
- F. Schwartau, Y. Schröder, L. Wolf and J. Schoebel, MRLA search results and source code, Nov 6 2020.
- F. Schwartau, Y. Schröder, L. Wolf and J. Schoebel, Large Minimum Redundancy Linear Arrays: Systematic Search of Perfect and Optimal Rulers Exploiting Parallel Processing, IEEE Open Journal of Antennas and Propagation, 2 (2021), 79-85.
- J. Singer, A theorem in finite projective geometry and some applications to number theory, Trans. Amer. Math. Soc. 43 (1938), 377-85.
- David Singmaster, David Fielker, N. J. A. Sloane, Correspondence, August 1979.
- M. Wald & N. J. A. Sloane, Correspondence and Attachment, 1987.
- Eric Weisstein's World of Mathematics, Graceful Graph.
- B. Wichmann, A note on restricted difference bases, J. Lond. Math. Soc. 38 (1963), 465-466.
- Al Zimmermann's Programming Contests, Graceful Graphs, September - December 2013.
A080060 is an erroneous version of the sequence, given in Bermond's paper. Cf.
A005488.
A289761 provides the conjectured continuation.
Miller's paper gives these lower bounds for the 8 terms from a(15) to a(22): 79, 90, 101, 112, 123, 138, 153, 168.
Using this program
Hugo Pfoertner found further evidence for the conjectured term a(21)=153, Feb 23 2005
Terms a(21) .. a(24) proved by exhaustive search by Arch D. Robison,
Hugo Pfoertner, Nov 01 2013
Term a(25) proved by exhaustive search by Arch D. Robison,
Peter Luschny, Jan 14 2014
Term a(26) proved by exhaustive search by Fabian Schwartau,
Yannic Schröder, Lars Wolf, Joerg Schoebel, Feb 22 2021
A163255
An interspersion: the order array of A163254.
Original entry on oeis.org
1, 3, 2, 7, 5, 4, 13, 10, 8, 6, 21, 17, 14, 11, 9, 31, 26, 22, 18, 15, 12, 43, 37, 32, 27, 23, 19, 16, 57, 50, 44, 38, 33, 28, 24, 20, 73, 65, 58, 51, 45, 39, 34, 29, 25, 91, 82, 74, 66, 59, 52, 46, 40, 35, 30, 111, 101, 92, 83, 75, 67, 60, 53, 47, 41, 36
Offset: 1
Corner:
1....3....7...13
2....5...10...17
4....8...14...22
To obtain A163255 from A163254, replace each term of A163254 by its rank when all the terms of A163254 are arranged in increasing order.
A112970
A generalized Stern sequence.
Original entry on oeis.org
1, 1, 1, 1, 2, 1, 2, 1, 3, 2, 2, 1, 4, 2, 2, 1, 5, 3, 3, 2, 5, 2, 3, 1, 6, 4, 3, 2, 6, 2, 3, 1, 7, 5, 4, 3, 8, 3, 5, 2, 8, 5, 4, 2, 8, 3, 3, 1, 9, 6, 5, 4, 9, 3, 6, 2, 9, 6, 4, 2, 9, 3, 3, 1, 10, 7, 6, 5, 11, 4, 8, 3, 12, 8, 6, 3, 13, 5, 5, 2, 13, 8, 7, 5, 12, 4, 7, 2, 12, 8, 5, 3, 11, 3, 4, 1, 12, 9, 7, 6
Offset: 0
Cf.
A033638 (p=0),
A000012 (p=1),
A004526 (p=2, p=3, p=5, p=9, p=17),
A002620 (p=4, p=7, p=13, p=25),
A000027 (p=6, p=11, p=21),
A004116 (p=8, p=15, p=29),
A035106 (p=10, p=19),
A024206 (p=14, p=27),
A007494 (p=18),
A014616 (p=22),
A179207 (p=26). -
Johannes W. Meijer, Jun 05 2011
-
A112970:=proc(n) option remember; if n <0 then A112970(n):=0 fi: if (n=0 or n=1) then 1 elif n mod 2 = 0 then A112970(n/2) + A112970((n/2)-2) else A112970((n-1)/2); fi; end: seq(A112970(n),n=0..99); # Johannes W. Meijer, Jun 05 2011
-
a[n_] := a[n] = Which[n<0, 0, n==0 || n==1, 1, Mod[n, 2]==0, a[n/2] + a[n/2-2], True, a[(n-1)/2]];
Table[a[n], {n, 0, 99}] (* Jean-François Alcover, Aug 02 2022 *)
A036572
Number of tetrahedra in largest triangulation of polygonal prism with regular polygonal base.
Original entry on oeis.org
3, 6, 10, 14, 19, 24, 30, 36, 43, 50, 58, 66, 75, 84, 94, 104, 115, 126, 138, 150, 163, 176, 190, 204, 219, 234, 250, 266, 283, 300, 318, 336, 355, 374, 394, 414, 435, 456, 478, 500, 523, 546, 570, 594, 619, 644, 670, 696, 723, 750, 778, 806
Offset: 3
Jesus De Loera (deloera(AT)math.ucdavis.edu)
- Vincenzo Librandi, Table of n, a(n) for n = 3..1000
- J. A. De Loera, F. Santos and F. Takeuchi, Extremal properties of optimal dissections of convex polytopes, SIAM Journal Discrete Mathematics, 14, 2001, 143-161.
- M. Develin, Maximal triangulations of a regular prism
- Index entries for linear recurrences with constant coefficients, signature (2,0,-2,1).
-
[Ceiling((n*n+6*n-16)/4): n in [3..60]]; // Vincenzo Librandi, Oct 21 2013
-
CoefficientList[Series[(2 x^2 - 3)/((x - 1)^3 (x + 1)), {x, 0, 60}], x] (* Vincenzo Librandi, Oct 21 2013 *)
LinearRecurrence[{2,0,-2,1},{3,6,10,14},60] (* Harvey P. Dale, Jun 05 2017 *)
-
Vec(x^3*(2*x^2-3)/((x-1)^3*(x+1)) + O(x^100)) \\ Colin Barker, Sep 05 2013
A204250
Symmetric matrix read by antidiagonals given by T(i,j)=i*j+i+j-2.
Original entry on oeis.org
1, 3, 3, 5, 6, 5, 7, 9, 9, 7, 9, 12, 13, 12, 9, 11, 15, 17, 17, 15, 11, 13, 18, 21, 22, 21, 18, 13, 15, 21, 25, 27, 27, 25, 21, 15, 17, 24, 29, 32, 33, 32, 29, 24, 17, 19, 27, 33, 37, 39, 39, 37, 33, 27, 19, 21, 30, 37, 42, 45, 46, 45, 42, 37, 30, 21, 23, 33, 41, 47
Offset: 1
Northwest corner:
1...3...5....7....9
3...6...9....12...15
5...9...13...17...21
7...12..17...22...27
-
f[i_, j_] := i*j + i + j - 2;
m[n_] := Table[f[i, j], {i, 1, n}, {j, 1, n}]
TableForm[m[5]] (* 5x5 principal submatrix *)
Flatten[Table[f[i, n + 1 - i],
{n, 1, 12}, {i, 1, n}]] (* A204250 *)
Permanent[m_] :=
With[{a = Array[x, Length[m]]},
Coefficient[Times @@ (m.a), Times @@ a]];
Table[Permanent[m[n]], {n, 1, 14}] (* A204251 *)
A234305
Irregular triangle read by rows. Theoretical distribution of electrons based on the Janet's sequence A167268.
Original entry on oeis.org
1, 2, 2, 1, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 3, 2, 2, 4, 2, 2, 5, 2, 2, 6, 2, 2, 6, 1, 2, 2, 6, 2, 2, 2, 6, 2, 1, 2, 2, 6, 2, 2, 2, 2, 6, 2, 3, 2, 2, 6, 2, 4, 2, 2, 6, 2, 5, 2, 2, 6, 2, 6, 2, 2, 6, 2, 6, 1, 2, 2, 6, 2, 6, 2, 2, 2, 6, 2, 6, 2, 1, 2, 2, 6, 2, 6, 2, 2, 2, 2, 6, 2, 6, 2, 3, 2, 2, 6, 2, 6, 2, 4
Offset: 1
1, H
2, He
2, 1, Li
2, 2, Be
2, 2, 1,
2, 2, 2,
2, 2, 3,
2, 2, 4,
2, 2, 5,
2, 2, 6,
2, 2, 6, 1,
2, 2, 6, 2,
2, 2, 6, 2, 1,
2, 2, 6, 2, 2,
2, 2, 6, 2, 3,
2, 2, 6, 2, 4,
2, 2, 6, 2, 5,
2, 2, 6, 2, 6,
2, 2, 6, 2, 6, 1,
2, 2, 6, 2, 6, 2,
2, 2, 6, 2, 6, 2, 1,
2, 2, 6, 2, 6, 2, 2,
2, 2, 6, 2, 6, 2, 3, etc.
A377802
Triangle read by rows: T(n, k) = (2 * (n+1)^2 + 7 - (-1)^n) / 8 - k.
Original entry on oeis.org
1, 2, 1, 4, 3, 2, 6, 5, 4, 3, 9, 8, 7, 6, 5, 12, 11, 10, 9, 8, 7, 16, 15, 14, 13, 12, 11, 10, 20, 19, 18, 17, 16, 15, 14, 13, 25, 24, 23, 22, 21, 20, 19, 18, 17, 30, 29, 28, 27, 26, 25, 24, 23, 22, 21, 36, 35, 34, 33, 32, 31, 30, 29, 28, 27, 26, 42, 41, 40, 39, 38, 37, 36, 35, 34, 33, 32, 31
Offset: 1
Triangle T(n, k) for 1 <= k <= n starts:
n\ k : 1 2 3 4 5 6 7 8 9 10 11 12 13
==========================================================
1 : 1
2 : 2 1
3 : 4 3 2
4 : 6 5 4 3
5 : 9 8 7 6 5
6 : 12 11 10 9 8 7
7 : 16 15 14 13 12 11 10
8 : 20 19 18 17 16 15 14 13
9 : 25 24 23 22 21 20 19 18 17
10 : 30 29 28 27 26 25 24 23 22 21
11 : 36 35 34 33 32 31 30 29 28 27 26
12 : 42 41 40 39 38 37 36 35 34 33 32 31
13 : 49 48 47 46 45 44 43 42 41 40 39 38 37
etc.
Showing 1-10 of 10 results.
Comments