A167430
Fractal sequence of the interspersion A163255.
Original entry on oeis.org
1, 2, 1, 3, 2, 4, 1, 3, 5, 2, 4, 6, 1, 3, 5, 7, 2, 4, 6, 8, 1, 3, 5, 7, 9, 2, 4, 6, 8, 10, 1, 3, 5, 7, 9, 11, 2, 4, 6, 8, 10, 12, 1, 3, 5, 7, 9, 11, 13, 2, 4, 6, 8, 10, 12, 14, 1, 3, 5, 7, 9, 11, 13, 15, 2, 4, 6, 8, 10, 12, 14, 16, 1, 3, 5, 7, 9, 11, 13, 15, 17, 2, 4, 6, 8, 10, 12, 14, 16, 18, 1, 3, 5, 7
Offset: 1
A163253
An interspersion: the order array of the odd-numbered columns of the double interspersion at A161179.
Original entry on oeis.org
1, 4, 2, 9, 5, 3, 16, 10, 7, 6, 25, 17, 13, 11, 8, 36, 26, 21, 18, 14, 12, 49, 37, 31, 27, 22, 19, 15, 64, 50, 43, 38, 32, 28, 23, 20, 81, 65, 57, 51, 44, 39, 33, 29, 24, 100, 82, 73, 66, 58, 52, 45, 40, 34, 30, 121, 101, 91, 83, 74, 67, 59, 53, 46, 41, 35
Offset: 1
Corner:
1....4....9...16...25
2....5...10...17...26
3....7...13...21...31
6...11...18...27...38
The double interspersion A161179 begins thus:
1....4....7...12...17...24
2....3....8...11...18...23
5....6...13...16...25...30
9...10...19...22...33...38
Expel the even-numbered columns, leaving
1....7...17...
2....8...18...
5...13...25...
9...19...33...
Then replace each of those numbers by its rank when all the numbers are jointly ranked.
A163254
Array of the nonsquares; the columns satisfy c(n)=c(n-1)+c(n-2)-c(n-3)+1.
Original entry on oeis.org
2, 5, 3, 10, 7, 6, 17, 13, 11, 8, 26, 21, 18, 14, 12, 37, 31, 27, 22, 19, 15, 50, 43, 38, 32, 28, 23, 20, 65, 57, 51, 44, 39, 33, 29, 24, 82, 73, 66, 58, 52, 45, 40, 34, 30, 101, 91, 83, 74, 67, 59, 53, 46, 41, 35, 122, 111, 102, 92, 84, 75, 68, 60, 54
Offset: 1
Corner:
2....5...10...17...26
3....7...13...21...31
6...11...18...27...38
A163256
Fractal sequence of the interspersion A163253.
Original entry on oeis.org
1, 2, 3, 1, 2, 4, 3, 5, 1, 2, 4, 6, 3, 5, 7, 1, 2, 4, 6, 8, 3, 5, 7, 9, 1, 2, 4, 6, 8, 10, 3, 5, 7, 9, 11, 1, 2, 4, 6, 8, 10, 12, 3, 5, 7, 9, 11, 13, 1, 2, 4, 6, 8, 10, 12, 14, 3, 5, 7, 9, 11, 13, 15, 1, 2, 4, 6, 8, 10, 12, 14, 16, 3, 5, 7, 9, 11, 13, 15, 17, 1, 2, 4, 6, 8, 10, 12, 14, 16, 18, 3, 5, 7
Offset: 1
Append the following segments:
1 2 3
1 2 4 3 5
1 2 4 6 3 5 7
1 2 4 6 8 3 5 7 9
For n>1, the n-th segment arises from the (n-1)st by inserting 2*n at position n+1 and appending 2*n+1 at position 2*n+1.
-
Flatten[FoldList[Append[Insert[#1, 2 #2, #2 + 1], 2 #2 + 1] &, {1}, Range[10]]] (* Birkas Gyorgy, Jul 09 2012 *)
A163258
Fractal sequence of the interspersion A163257.
Original entry on oeis.org
1, 2, 3, 4, 1, 2, 5, 3, 6, 4, 1, 2, 7, 5, 3, 8, 6, 4, 1, 2, 9, 7, 5, 3, 10, 8, 6, 4, 1, 2, 11, 9, 7, 5, 3, 12, 10, 8, 6, 4, 1, 2, 13, 11, 9, 7, 5, 3, 14, 12, 10, 8, 6, 4, 1, 2, 15, 13, 11, 9, 7, 5, 3, 16, 14, 12, 10, 8, 6, 4, 1, 2, 17, 15, 13, 11, 9, 7, 5, 3, 18, 16, 14, 12, 10, 8, 6, 4
Offset: 1
Append the following segments:
1 2 3 4
1 2 5 3 6 4
1 2 7 5 3 8 6 4
1 2 9 7 5 3 10 8 6 4
For n>1, the n-th segment arises from the (n-1)st by inserting 2*n+1 at position 3 and 2*n+2 at position n+3.
A163257
An interspersion: the order array of the even-numbered columns (after swapping the first two rows) of the double interspersion at A161179.
Original entry on oeis.org
1, 5, 2, 11, 6, 3, 19, 12, 8, 4, 29, 20, 15, 10, 7, 41, 30, 24, 18, 14, 9, 55, 42, 35, 28, 23, 17, 13, 71, 56, 48, 40, 34, 27, 22, 16, 89, 72, 63, 54, 47, 39, 33, 26, 21, 109, 90, 80, 70, 62, 53, 46, 38, 32, 25, 131, 110, 99, 88, 79, 69, 61, 52, 45, 37, 31, 155, 132, 120, 108
Offset: 1
Corner:
1....5...11...19
2....6...12...20
3....8...15...24
4...10...18...28
The double interspersion A161179 begins thus:
1....4....7...12...17...24
2....3....8...11...18...23
5....6...13...16...25...30
9...10...19...22...33...38
Expel the odd-numbered columns and then swap rows 1 and 2, leaving
3....11...23...39
4....12...24...40
6....16...30...48
10...22...38...58
Then replace each of those numbers by its rank when all the numbers are jointly ranked.
A361974
(1,2)-block array, B(1,2), of the natural number array (A000027), read by descending antidiagonals.
Original entry on oeis.org
3, 11, 8, 27, 20, 15, 51, 40, 31, 24, 83, 68, 55, 44, 35, 123, 104, 87, 72, 59, 48, 171, 148, 127, 108, 91, 76, 63, 227, 200, 175, 152, 131, 112, 95, 80, 291, 260, 231, 204, 179, 156, 135, 116, 99, 363, 328, 295, 264, 235, 208, 183, 160, 139, 120, 443, 404
Offset: 1
Corner of B(1,2):
3 11 27 51 83 123 171 227
8 20 40 68 104 148 200 260
15 31 55 87 127 175 231 295
24 44 72 108 152 204 264 332
35 59 91 131 179 235 299 371
48 76 112 156 298 268 336 412
(row 1 of A000027) = (1,2,4,7,11,16,22,29,...), so (row 1 of B(1,2)) = (3,11,27,58,...);
(row 2 of A000027) = (3,5,8,12,17,23,30,38,...), so (row 2 of B(1,2)) = (8,20,40,68,...).
-
zz = 10; z = 13;
w[n_, k_] := n + (n + k - 2) (n + k - 1)/2;
t[h_, k_] := w[h, 2 k - 1] + w[h, 2 k];
Table[t[n - k + 1, k], {n, 12}, {k, n, 1, -1}] // Flatten (*A361974 sequence*)
TableForm[Table[t[h, k], {h, 1, zz}, {k, 1, z}]] (*A361974 array*)
A361996
Order array of A361994, read by descending antidiagonals.
Original entry on oeis.org
1, 2, 3, 6, 7, 4, 15, 17, 11, 5, 39, 43, 28, 14, 8, 102, 112, 73, 38, 20, 9, 268, 292, 191, 100, 51, 23, 10, 568, 592, 491, 263, 132, 61, 27, 12, 868, 892, 791, 563, 345, 159, 72, 32, 13, 1168, 1192, 1091, 863, 645, 416, 189, 83, 35, 16, 1468, 1492, 1391
Offset: 1
Corner:
1 2 6 15 39 102 268 ...
3 7 17 43 112 292 592 ...
4 11 28 73 191 491 791 ...
5 14 38 100 263 563 863 ...
8 20 51 132 345 645 945 ...
9 23 61 159 416 716 1016 ...
...
-
zz = 300; z = 30;
w[n_, k_] := w[n, k] = Fibonacci[k + 1] Floor[n*GoldenRatio] + (n - 1) Fibonacci[k];
b[h_, k_] := b[h, k] = w[2 h - 1, 2 k - 1] + w[2 h - 1, 2 k] + w[2 h, 2 k - 1] + w[2 h, 2 k];
s = Flatten[Table[b[h, k], {h, 1, zz}, {k, 1, z}]];
r[h_, k_] := Length[Select[s, # <= b[h, k] &]]
TableForm[Table[r[h, k], {h, 1, 50}, {k, 1, 12}]](*A351996, array*)
v = Table[r[n - k + 1, k], {n, 12}, {k, n, 1, -1}] // Flatten (*A351996, sequence *)
A234305
Irregular triangle read by rows. Theoretical distribution of electrons based on the Janet's sequence A167268.
Original entry on oeis.org
1, 2, 2, 1, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 3, 2, 2, 4, 2, 2, 5, 2, 2, 6, 2, 2, 6, 1, 2, 2, 6, 2, 2, 2, 6, 2, 1, 2, 2, 6, 2, 2, 2, 2, 6, 2, 3, 2, 2, 6, 2, 4, 2, 2, 6, 2, 5, 2, 2, 6, 2, 6, 2, 2, 6, 2, 6, 1, 2, 2, 6, 2, 6, 2, 2, 2, 6, 2, 6, 2, 1, 2, 2, 6, 2, 6, 2, 2, 2, 2, 6, 2, 6, 2, 3, 2, 2, 6, 2, 6, 2, 4
Offset: 1
1, H
2, He
2, 1, Li
2, 2, Be
2, 2, 1,
2, 2, 2,
2, 2, 3,
2, 2, 4,
2, 2, 5,
2, 2, 6,
2, 2, 6, 1,
2, 2, 6, 2,
2, 2, 6, 2, 1,
2, 2, 6, 2, 2,
2, 2, 6, 2, 3,
2, 2, 6, 2, 4,
2, 2, 6, 2, 5,
2, 2, 6, 2, 6,
2, 2, 6, 2, 6, 1,
2, 2, 6, 2, 6, 2,
2, 2, 6, 2, 6, 2, 1,
2, 2, 6, 2, 6, 2, 2,
2, 2, 6, 2, 6, 2, 3, etc.
A361995
Order array of A361993, read by descending antidiagonals.
Original entry on oeis.org
1, 2, 4, 3, 6, 7, 5, 10, 11, 8, 9, 16, 18, 14, 12, 15, 26, 29, 23, 19, 13, 24, 42, 46, 38, 31, 22, 17, 39, 68, 74, 62, 50, 36, 28, 20, 63, 110, 119, 100, 81, 59, 45, 32, 21, 102, 111, 192, 101, 131, 97, 73, 52, 35, 25, 165, 179, 310, 162, 212, 158, 118, 84
Offset: 1
Corner:
1 2 3 5 9 15 24 ...
4 6 10 16 26 42 68 ...
7 11 18 29 46 74 119 ...
8 14 23 38 62 100 162 ...
12 19 31 50 81 131 212 ...
13 22 36 59 97 158 191 ...
...
-
zz = 300; z = 40;
w[n_, k_] := w[n, k] = Fibonacci[k + 1] Floor[n*GoldenRatio] + (n - 1) Fibonacci[k];
b[h_, k_] := b[h, k] = w[2 h - 1, k] + w[2 h, k];
s = Flatten[Table[b[h, k], {h, 1, zz}, {k, 1, z}]];
r[h_, k_] := Length[Select[s, # <= b[h, k] &]]
TableForm[Table[r[h, k], {h, 1, 50}, {k, 1, 12}]] (*A351995, array*)
v = Table[r[n - k + 1, k], {n, 12}, {k, n, 1, -1}] // Flatten (*A351995, sequence*)
Showing 1-10 of 10 results.
Comments