A004202 Skip 1, take 1, skip 2, take 2, skip 3, take 3, etc.
2, 5, 6, 10, 11, 12, 17, 18, 19, 20, 26, 27, 28, 29, 30, 37, 38, 39, 40, 41, 42, 50, 51, 52, 53, 54, 55, 56, 65, 66, 67, 68, 69, 70, 71, 72, 82, 83, 84, 85, 86, 87, 88, 89, 90, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132
Offset: 1
Examples
Interpretation as Wythoff sequence (from _Clark Kimberling_): s = (1,2,2,3,3,3,4,4,4,4...) = A002024 (n n's); a = (1,3,4,7,8,9,13,14,...) = A004201 = least number > 0 not yet in a or b; b = (2,5,6,10,11,12,17,18,...) = A004202 = a+s. From _Michael Somos_, May 03 2019: (Start) As a triangular array 2; 5, 6; 10, 11, 12; 17, 18, 19, 20; (End)
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..10000
Programs
-
Haskell
a004202 n = a004202_list !! (n-1) a004202_list = skipTake 1 [1..] where skipTake k xs = take k (drop k xs) ++ skipTake (k + 1) (drop (2*k) xs) -- Reinhard Zumkeller, Feb 12 2011
-
Mathematica
a = Table[n, {n, 1, 210} ]; b = {}; Do[a = Drop[a, {1, n} ]; b = Append[b, Take[a, {1, n} ]]; a = Drop[a, {1, n} ], {n, 1, 14} ]; Flatten[b] a[ n_] := If[ n < 1, 0, With[{m = Round@Sqrt[2 n]}, n + m (m + 1)/2]]; (* Michael Somos, May 03 2019 *) Take[#,(-Length[#])/2]&/@Module[{nn=20},TakeList[Range[ nn+nn^2],2*Range[ nn]]]//Flatten (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, May 13 2019 *)
-
PARI
A004202(n) = n+0+(n=(sqrtint(8*n-7)+1)\2)*(n+1)\2 \\ M. F. Hasler, Feb 13 2011
-
PARI
{a(n) = my(m); if( n<1, 0, m=round(sqrt(2*n)); n + m*(m+1)/2)}; /* Michael Somos, May 03 2019 */
-
Python
from math import isqrt, comb def A004202(n): return n+comb((m:=isqrt(k:=n<<1))+(k-m*(m+1)>=1)+1,2) # Chai Wah Wu, Jun 19 2024
Formula
T(n, k) = n^2 + k, for n>=1, k>=1 as a triangular array. a(n) = n + A127739(n). - Michael Somos, May 03 2019
Comments