A004280 2 together with the odd numbers (essentially the result of the first stage of the sieve of Eratosthenes).
1, 2, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 63, 65, 67, 69, 71, 73, 75, 77, 79, 81, 83, 85, 87, 89, 91, 93, 95, 97, 99, 101, 103, 105, 107, 109, 111, 113, 115, 117, 119, 121, 123, 125, 127, 129, 131
Offset: 1
References
- F. S. Roberts, Applied Combinatorics, Prentice-Hall, 1984, p. 256.
Links
- G. C. Greubel, Table of n, a(n) for n = 1..5000
- Borys Kuca, Structures in Additive Sequences, arXiv:1804.09594 [math.NT], 2018. See V(1,2).
- Jorma K. Merikoski, Pentti Haukkanen, and Timo Tossavainen, The congruence x^n = -a^n (mod m): Solvability and related OEIS sequences, Notes. Num. Theor. Disc. Math. (2024) Vol. 30, No. 3, 516-529. See p. 528.
- H. B. Meyer, Eratosthenes' sieve
- Index entries for linear recurrences with constant coefficients, signature (2,-1).
- Index entries for sequences generated by sieves
Crossrefs
Cf. A002858.
Programs
-
Maple
1,2,seq(2*n-1,n=2..70); # Emeric Deutsch, May 13 2007
-
Mathematica
Union[ Join[ 2Range[70] - 1, {2}]] (* Robert G. Wilson v *)
-
PARI
a(n)=2*n + 2\n - 3 \\ Charles R Greathouse IV, Nov 01 2011
-
Sage
[1,2]+[2*n-3 for n in (3..70)] # G. C. Greubel, Nov 25 2021
Formula
From Paul Barry, Mar 05 2007: (Start)
G.f.: x*(1+x^3)/(1-x)^2;
a(n) = 2*n - 3 + C(1, n-1) + C(0, n-1). (End)
a(n) = 2*n - 3 + floor(2/n). - Wesley Ivan Hurt, May 23 2013
E.g.f.: (1/2)*(6 + 4*x + x^2 - 2*(3 - 2*x)*exp(x)). - G. C. Greubel, Nov 25 2021
Extensions
Offset changed to 1 and formulas updated accordingly (at the suggestion of Michel Marcus) by Charles R Greathouse IV, Sep 03 2013
Comments