cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 26 results. Next

A368382 a(1) = 1; for n > 1, a(n) is the least positive integer not already in the sequence such that a(n) == a(n-1) (mod A004280(n)).

Original entry on oeis.org

1, 3, 6, 11, 4, 13, 2, 15, 30, 47, 9, 51, 5, 55, 28, 57, 26, 59, 24, 61, 22, 63, 20, 65, 18, 67, 16, 69, 14, 71, 12, 73, 10, 75, 8, 77, 148, 221, 146, 223, 144, 225, 142, 227, 53, 231, 49, 235, 45, 239, 41, 243, 37, 247, 33, 251, 29, 255, 25, 259, 21, 263, 17, 267, 140, 269, 7, 273, 138, 275, 136, 277, 134, 279, 132, 281
Offset: 1

Views

Author

N. J. A. Sloane, Mar 03 2024

Keywords

Comments

Analogous to A364054, but whereas that sequence is based on the sequence of primes (2, 3, 5, 7, 11, ....), the present sequence is based on the sequence 2, 3, 5, 7, 9, 11, 13, 15, ... (2 together with the odd numbers >1, essentially A004280).

Crossrefs

Cf. A004280.
Similar definitions: A005132, A006509, A364054.

Programs

  • Python
    from itertools import count, islice
    def A368382_gen(): # generator of terms
        a, aset, p = 1, {0,1}, 2
        while True:
            yield a
            for b in count(a%p,p):
                if b not in aset:
                    aset.add(b)
                    a, p = b, 3 if p == 2 else p+2
                    break
    A368382_list = list(islice(A368382_gen(),40)) # Chai Wah Wu, Mar 05 2024

A055396 Smallest prime dividing n is a(n)-th prime (a(1)=0).

Original entry on oeis.org

0, 1, 2, 1, 3, 1, 4, 1, 2, 1, 5, 1, 6, 1, 2, 1, 7, 1, 8, 1, 2, 1, 9, 1, 3, 1, 2, 1, 10, 1, 11, 1, 2, 1, 3, 1, 12, 1, 2, 1, 13, 1, 14, 1, 2, 1, 15, 1, 4, 1, 2, 1, 16, 1, 3, 1, 2, 1, 17, 1, 18, 1, 2, 1, 3, 1, 19, 1, 2, 1, 20, 1, 21, 1, 2, 1, 4, 1, 22, 1, 2, 1, 23, 1, 3, 1, 2, 1, 24, 1, 4, 1, 2, 1, 3, 1
Offset: 1

Views

Author

Henry Bottomley, May 15 2000

Keywords

Comments

Grundy numbers of the game in which you decrease n by a number prime to n, and the game ends when 1 is reached. - Eric M. Schmidt, Jul 21 2013
a(n) = the smallest part of the partition having Heinz number n. We define the Heinz number of a partition p = [p_1, p_2, ..., p_r] as Product(p_j-th prime, j=1...r) (concept used by Alois P. Heinz in A215366 as an "encoding" of a partition). For example, for the partition [1, 1, 2, 4, 10] we get 2*2*3*7*29 = 2436. Example: a(21) = 2; indeed, the partition having Heinz number 21 = 3*7 is [2,4]. - Emeric Deutsch, Jun 04 2015
a(n) is the number of numbers whose largest proper divisor is n, i.e., for n>1, number of occurrences of n in A032742. - Stanislav Sykora, Nov 04 2016
For n > 1, a(n) gives the number of row where n occurs in arrays A083221 and A246278. - Antti Karttunen, Mar 07 2017

Examples

			a(15) = 2 because 15=3*5, 3<5 and 3 is the 2nd prime.
		

References

  • John H. Conway, On Numbers and Games, 2nd Edition, p. 129.

Crossrefs

Programs

  • Haskell
    a055396 = a049084 . a020639  -- Reinhard Zumkeller, Apr 05 2012
    
  • Maple
    with(numtheory):
    a:= n-> `if`(n=1, 0, pi(min(factorset(n)[]))):
    seq(a(n), n=1..100);  # Alois P. Heinz, Aug 03 2013
  • Mathematica
    a[1] = 0; a[n_] := PrimePi[ FactorInteger[n][[1, 1]] ]; Table[a[n], {n, 1, 96}](* Jean-François Alcover, Jun 11 2012 *)
  • PARI
    a(n)=if(n==1,0,primepi(factor(n)[1,1])) \\ Charles R Greathouse IV, Apr 23 2015
    
  • Python
    from sympy import primepi, isprime, primefactors
    def a049084(n): return primepi(n)*(1*isprime(n))
    def a(n): return 0 if n==1 else a049084(min(primefactors(n))) # Indranil Ghosh, May 05 2017

Formula

From Reinhard Zumkeller, May 22 2003: (Start)
a(n) = A049084(A020639(n)).
A000040(a(n)) = A020639(n); a(n) <= A061395(n).
(End)
From Antti Karttunen, Mar 07 2017: (Start)
A243055(n) = A061395(n) - a(n).
a(A276086(n)) = A257993(n).
(End)

A002858 Ulam numbers: a(1) = 1; a(2) = 2; for n>2, a(n) = least number > a(n-1) which is a unique sum of two distinct earlier terms.

Original entry on oeis.org

1, 2, 3, 4, 6, 8, 11, 13, 16, 18, 26, 28, 36, 38, 47, 48, 53, 57, 62, 69, 72, 77, 82, 87, 97, 99, 102, 106, 114, 126, 131, 138, 145, 148, 155, 175, 177, 180, 182, 189, 197, 206, 209, 219, 221, 236, 238, 241, 243, 253, 258, 260, 273, 282, 309, 316, 319, 324, 339
Offset: 1

Views

Author

Keywords

Comments

Ulam conjectured that this sequence has density 0. However, calculations up to 6.759*10^8 (Jud McCranie) indicate that the density hovers near 0.074.
A plot of the first 3 million terms shows that they lie very close to the straight line 13.51*n, so even if we cannot prove it, we believe we now know how this sequence grows (see the plots in the links below). - N. J. A. Sloane, Sep 27 2006
After a few initial terms, the sequence settles into a regular pattern of dense clumps separated by sparse gaps, with period 21.601584+. This pattern continues up to at least a(n) = 5*10^6. (This comment is just a qualitative statement about the wavelike distribution of Ulam numbers, not meant to imply that every period includes Ulam numbers.) - David W. Wilson
_Don Knuth_ (Sep 26 2006) remarks that a(4952)=64420 and a(4953)=64682 (a gap of more than ten "dense clumps"); and there is a gap of 315 between a(18857) and a(18858).
1,2,3,47 are the only values of x < 6.759*10^8 such that x and x+1 are both Ulam numbers. - Jud McCranie, Jun 08 2001. This holds through the first 28 billion Ulam numbers - Jud McCranie, Jan 07 2016.
From Jud McCranie on David W. Wilson's illustration, Jun 20 2008: (Start)
The integers are shown from left to right, top to bottom, with a dot where there is an Ulam number. I think his plot is 216 wide. The local density of Ulam numbers goes in waves with a period of 21.6+, so his plot shows ten cycles.
When they are arranged that way you can see the waves. The crests of the density waves don't always have Ulam numbers there but the troughs are practically void of Ulam numbers. I noticed that the ratio of that period (21.6+) to the frequency of Ulam numbers (1 in 13.52) is very close to 8/5. (End)
a(50000000) = 675904508. - Jud McCranie, Feb 29 2012
a(100000000) = 1351856726. - Jud McCranie, Jul 31 2012
a(1000000000) = 13517664323. - Jud McCranie, Aug 28 2015
a(28000000000) = 378485625853 - Philip Gibbs & Jud McCranie, Sep 09 2015
3 (=1+2) and 131 (=62+69) are the only two Ulam numbers in the first 28 billion Ulam numbers that are the sum of two consecutive Ulam numbers. - Jud McCranie, Jan 09 2016
Named after the Polish-American scientist Stanislaw Ulam (1909-1984). - Amiram Eldar, Jun 08 2021

References

  • Steven R. Finch, Mathematical Constants, Cambridge, 2003, Section 2.16.2.
  • Richard K. Guy, Unsolved Problems in Number Theory, C4.
  • Donald E. Knuth, The Art of Computer Programming, Volume 4A, Section 7.1.3.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, page 116.
  • Marvin C. Wunderlich, The improbable behavior of Ulam's summation sequence, pp. 249-257 of A. O. L. Atkin and B. J. Birch, editors, Computers in Number Theory. Academic Press, NY, 1971.
  • David Zeitlin, Ulam's sequence {U_n}, U_1=1, U_2=2, is a complete sequence, Notices Amer. Math. Soc., 22 (No. 7, 1975), Abstract 75T-A267, p. A-707.

Crossrefs

Cf. A002859 (version beginning 1,3), A054540, A003667, A001857, A007300, A117140, A214603.
First differences: A072832, A072540.
Cf. A080287, A080288, A004280 (if distinct removed from definition).
See also the density plots in A080573 and A285884.

Programs

  • Haskell
    a002858 n = a002858_list !! (n-1)
    a002858_list = 1 : 2 : ulam 2 2 a002858_list
    ulam :: Int -> Integer -> [Integer] -> [Integer]
    ulam n u us = u' : ulam (n + 1) u' us where
       u' = f 0 (u+1) us'
       f 2 z _                         = f 0 (z + 1) us'
       f e z (v:vs) | z - v <= v       = if e == 1 then z else f 0 (z + 1) us'
                    | z - v `elem` us' = f (e + 1) z vs
                    | otherwise        = f e z vs
       us' = take n us
    -- Reinhard Zumkeller, Nov 03 2011
    
  • Julia
    function isUlam(u, n, h, i, r)
        h == 2 && return false
        ur = u[r]; ui = u[i]
        ur <= ui && return h == 1
        if ur + ui > n
            r -= 1
        elseif ur + ui < n
            i += 1
        else
            h += 1; i += 1; r -= 1
        end
        isUlam(u, n, h, i, r)
    end
    function UlamList(len)
        u = Array{Int, 1}(undef, len)
        u[1] = 1; u[2] = 2; i = 2; n = 2
        while i < len
            n += 1
            if isUlam(u, n, 0, 1, i)
                i += 1
                u[i] = n
            end
        end
        return u
    end
    println(UlamList(59)) # Peter Luschny, Apr 07 2019
    
  • Maple
    UlamList := proc(len) local isUlam, nextUlam, behead; behead := u -> u[2..numelems(u)]; isUlam := proc(n, h, u, r) local hu, tu, hr, tr; hu := u[1]; hr := r[1]; if h = 2 then return false fi; if hr <= hu then return evalb(h = 1) fi; if (hr + hu) = n then tu := behead(u); tr := behead(r); return isUlam(n, h+1, tu, tr) fi; if (hr + hu) < n then tu := behead(u): return isUlam(n, h, tu, r) fi; tr := behead(r); isUlam(n, h, u, tr) end: nextUlam := proc(n, u, r) if isUlam(n, 0, u, r) then if nops(u) = len-1 then return [op(u), n] fi; nextUlam(n+1, [op(u), n], [n, op(r)]) else nextUlam(n+1, u, r) fi end: nextUlam(3, [1, 2], [2, 1]) end:
    UlamList(59); # Peter Luschny, Apr 05 2019
  • Mathematica
    Ulam4Compiled = Compile[{{nmax, _Integer}, {init, _Integer, 1}, {s, _Integer}}, Module[{ulamhash = Table[0, {nmax}], ulam = init}, ulamhash[[ulam]] = 1; Do[ If[Quotient[Plus @@ ulamhash[[i - ulam]], 2] == s, AppendTo[ulam, i]; ulamhash[[i]] = 1], {i, Last[init] + 1, nmax}]; ulam]]; ulams = Ulam4Compiled[355, {1, 2}, 1]
    (* Second program: *)
    ulams = {1, 2}; Do[AppendTo[ulams, n = Last[ulams]; While[n++; Length[DeleteCases[Intersection[ulams, n - ulams], n/2, 1, 1]] != 2]; n], {100}]; ulams (* Jean-François Alcover, Sep 08 2011 *)
    findUlams[s_List, j_Integer] := Block[{k = s[[-1]] + 1, ss = Plus @@@ Subsets[s, {j}]}, While[ Count[ss, k] != 1, k++]; Append[s, k]]; ulams = Nest[findUlams[#, 2] &, {1, 2}, 70] (* Robert G. Wilson v, Jul 05 2014 *)
  • PARI
    aupto(N)= my(seen=vector(N), U=[]); seen[1]=seen[2]=1; for(i=1,N, if(1==seen[i], for(j=1,#U, my(sum=i+U[j]); if(sum>N, break); seen[sum]++); U=concat(U,i))); U \\ Ruud H.G. van Tol, Dec 29 2022
  • Python
    def isUlam(n, h, u, r):
        if h == 2: return False
        hu = u[0]; hr = r[0]
        if hr <= hu: return h == 1
        if hr + hu > n: r = r[1:]
        elif hr + hu < n: u = u[1:]
        else: h += 1; r = r[1:]; u = u[1:]
        return isUlam(n, h, u, r)
    def UlamList(length):
        u = [1, 2]; r = [2, 1]; n = 2
        while len(u) < length:
            n += 1
            if isUlam(n, 0, u[:], r[:]):
                u.append(n); r.insert(0, n)
        return u
    print(UlamList(59)) # Peter Luschny, Apr 06 2019
    

Extensions

More terms from Jud McCranie

A083221 Sieve of Eratosthenes arranged as an array and read by antidiagonals as A(1,1), A(1,2), A(2,1), A(1,3), A(2,2), A(3,1), ...

Original entry on oeis.org

2, 4, 3, 6, 9, 5, 8, 15, 25, 7, 10, 21, 35, 49, 11, 12, 27, 55, 77, 121, 13, 14, 33, 65, 91, 143, 169, 17, 16, 39, 85, 119, 187, 221, 289, 19, 18, 45, 95, 133, 209, 247, 323, 361, 23, 20, 51, 115, 161, 253, 299, 391, 437, 529, 29, 22, 57, 125, 203, 319, 377, 493, 551, 667
Offset: 2

Views

Author

Yasutoshi Kohmoto, Jun 05 2003

Keywords

Comments

This is permutation of natural numbers larger than 1.
From Antti Karttunen, Dec 19 2014: (Start)
If we assume here that a(1) = 1 (but which is not explicitly included because outside of the array), then A252460 gives an inverse permutation. See also A249741.
For navigating in this array:
A055396(n) gives the row number of row where n occurs, and A078898(n) gives its column number, both starting their indexing from 1.
A250469(n) gives the number immediately below n, and when n is an odd number >= 3, A250470(n) gives the number immediately above n. If n is a composite, A249744(n) gives the number immediately left of n.
First cube of each row, which is {the initial prime of the row}^3 and also the first number neither a prime or semiprime, occurs on row n at position A250474(n).
(End)
The n-th row contains the numbers whose least prime factor is the n-th prime: A020639(T(n,k)) = A000040(n). - Franklin T. Adams-Watters, Aug 07 2015

Examples

			The top left corner of the array:
   2,   4,   6,    8,   10,   12,   14,   16,   18,   20,   22,   24,   26
   3,   9,  15,   21,   27,   33,   39,   45,   51,   57,   63,   69,   75
   5,  25,  35,   55,   65,   85,   95,  115,  125,  145,  155,  175,  185
   7,  49,  77,   91,  119,  133,  161,  203,  217,  259,  287,  301,  329
  11, 121, 143,  187,  209,  253,  319,  341,  407,  451,  473,  517,  583
  13, 169, 221,  247,  299,  377,  403,  481,  533,  559,  611,  689,  767
  17, 289, 323,  391,  493,  527,  629,  697,  731,  799,  901, 1003, 1037
  19, 361, 437,  551,  589,  703,  779,  817,  893, 1007, 1121, 1159, 1273
  23, 529, 667,  713,  851,  943,  989, 1081, 1219, 1357, 1403, 1541, 1633
  29, 841, 899, 1073, 1189, 1247, 1363, 1537, 1711, 1769, 1943, 2059, 2117
  ...
		

Crossrefs

Transpose of A083140.
One more than A249741.
Inverse permutation: A252460.
Column 1: A000040, Column 2: A001248.
Row 1: A005843, Row 2: A016945, Row 3: A084967, Row 4: A084968, Row 5: A084969, Row 6: A084970.
Main diagonal: A083141.
First semiprime in each column occurs at A251717; A251718 & A251719 with additional criteria. A251724 gives the corresponding semiprimes for the latter. See also A251728.
Permutations based on mapping numbers between this array and A246278: A249817, A249818, A250244, A250245, A250247, A250249. See also: A249811, A249814, A249815.
Also used in the definition of the following arrays of permutations: A249821, A251721, A251722.

Programs

  • Mathematica
    lim = 11; a = Table[Take[Prime[n] Select[Range[lim^2], GCD[# Prime@ n, Product[Prime@ i, {i, 1, n - 1}]] == 1 &], lim], {n, lim}]; Flatten[Table[a[[i, n - i + 1]], {n, lim}, {i, n}]] (* Michael De Vlieger, Jan 04 2016, after Yasutoshi Kohmoto at A083140 *)

Extensions

More terms from Hugo Pfoertner, Jun 13 2003

A002559 Markoff (or Markov) numbers: union of positive integers x, y, z satisfying x^2 + y^2 + z^2 = 3*x*y*z.

Original entry on oeis.org

1, 2, 5, 13, 29, 34, 89, 169, 194, 233, 433, 610, 985, 1325, 1597, 2897, 4181, 5741, 6466, 7561, 9077, 10946, 14701, 28657, 33461, 37666, 43261, 51641, 62210, 75025, 96557, 135137, 195025, 196418, 294685, 426389, 499393, 514229, 646018, 925765, 1136689, 1278818
Offset: 1

Views

Author

Keywords

Comments

A004280 gives indices of Fibonacci numbers (A000045) which are also Markoff (or Markov) numbers.
As mentioned by Conway and Guy, all odd-indexed Pell numbers (A001653) also appear in this sequence. The positions of the Fibonacci and Pell numbers in this sequence are given in A158381 and A158384, respectively. - T. D. Noe, Mar 19 2009
Assuming that each solution (x,y,z) is ordered x <= y <= z, the open problem is to prove that each z value occurs only once. There are no counterexamples in the first 1046858 terms, which have z values < Fibonacci(5001) = 6.2763...*10^1044. - T. D. Noe, Mar 19 2009
Zagier shows that there are C log^2 (3x) + O(log x (log log x)^2) Markoff numbers below x, for C = 0.180717.... - Charles R Greathouse IV, Mar 14 2010 [but see Thompson, below]
The odd numbers in this sequence are of the form 4k+1. - Paul Muljadi, Jan 31 2011
All prime divisors of Markov numbers (with exception 2) are of the form 4k+1. - Artur Jasinski, Nov 20 2011
Kaneko extends a parameterization of Markoff numbers, citing Frobenius, and relates it to a conjectured behavior of the elliptic modular j-function at real quadratic numbers. - Jonathan Vos Post, May 06 2012
Riedel (2012) claims a proof of the unicity conjecture: "it will be shown that the largest member of [a Markoff] triple determines the other two uniquely." - Jonathan Sondow, Aug 21 2012
There are 93 terms with each term <= 2*10^9 in the sequence. The number of distinct prime divisors of any of the first 93 terms is less than 6. The second, third, 4th, 5th, 6th, 10th, 11th, 15th, 16th, 18th, 20th, 24th, 25th, 27th, 30th, 36th, 38th, 45th, 48th, 49th, 69th, 79th, 81st, 86th, 91st terms are primes. - Shanzhen Gao, Sep 18 2013
Bourgain, Gamburd, and Sarnak have announced a proof that almost all Markoff numbers are composite--see A256395. Equivalently, the prime Markoff numbers A178444 have density zero among all Markoff numbers. (It is conjectured that infinitely many Markoff numbers are prime.) - Jonathan Sondow, Apr 30 2015
According to Sarnak on Apr 30 2015, all claims to have proved the unicity conjecture have turned out to be false. - Jonathan Sondow, May 01 2015
The numeric value of C = lim (number of Markoff numbers < x) / log^2(3x) given in Zagier's paper and quoted above suffers from an accidentally omitted digit and rounding errors. The correct value is C = 0.180717104711806... (see A261613 for more digits). - Christopher E. Thompson, Aug 22 2015
Named after the Russian mathematician Andrey Andreyevich Markov (1856-1922). - Amiram Eldar, Jun 10 2021

References

  • Martin Aigner, Markov's theorem and 100 years of the uniqueness conjecture. A mathematical journey from irrational numbers to perfect matchings. Springer, 2013. x+257 pp. ISBN: 978-3-319-00887-5; 978-3-319-00888-2 MR3098784
  • John H. Conway and Richard K. Guy, The Book of Numbers, Copernicus Press, NY, 1996, p. 187.
  • Jean-Marie De Koninck, Those Fascinating Numbers, Amer. Math. Soc., 2009, page 86.
  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 2.31.3, p. 200.
  • Richard K. Guy, Unsolved Problems in Number Theory, D12.
  • G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, 5th ed., Oxford Univ. Press, 1979, notes on ch. 24.6 (p. 412)
  • Florian Luca and A. Srinivasan, Markov equation with Fibonacci components, Fib. Q., 56 (No. 2, 2018), 126-129.
  • Richard A. Mollin, Advanced Number Theory with Applications, Chapman & Hall/CRC, Boca Raton, 2010, 123-125.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Mathematica
    m = {1}; Do[x = m[[i]]; y = m[[j]]; a = (3*x*y + Sqrt[ -4*x^2 - 4*y^2 + 9*x^2*y^2])/2; b = (3*x*y + Sqrt[ -4*x^2 - 4*y^2 + 9*x^2*y^2])/2; If[ IntegerQ[a], m = Union[ Join[m, {a}]]]; If[ IntegerQ[b], m = Union[ Join[m, {b}]]], {n, 8}, {i, Length[m]}, {j, i}]; Take[m, 40] (* Robert G. Wilson v, Oct 05 2005 *)
    terms = 40; depth0 = 10; Clear[ft]; ft[n_] := ft[n] = Module[{f}, f[] = {1, 2, 5}; f[ud___, u(*up*)] := f[ud, u] = Module[{g = f[ud]}, {g[[1]], g[[3]], 3*g[[1]]*g[[3]] - g[[2]]}]; f[ud___, d(*down*)] := f[ud, d] = Module[{g = f[ud]}, {g[[2]], g[[3]], 3*g[[2]]*g[[3]] - g[[1]]}]; f @@@ Tuples[{u, d}, n] // Flatten // Union // PadRight[#, terms]&]; ft[n = depth0]; ft[n++]; While[ft[n] != ft[n - 1], n++]; Print["depth = n = ", n]; A002559 = ft[n] (* Jean-François Alcover, Aug 29 2017 *)
    MAX=10^10;
    data=NestWhile[Select[Union[Sort/@Flatten[Table[{a, b, 3a b -c}/.MapThread[Rule, {{a, b, c}, #}]&/@Map[RotateLeft[ii, #]&, Range[3]], {ii, #}], 1]], Max[#]Xianwen Wang, Aug 22 2021 *)
  • Python
    markov = set[tuple[int, int, int]]
    def MarkovNumbers(len: int = 50, MAX: int = 10**10) -> list[int]:
        cur: markov = {(1, 1, 1), (1, 1, 2), }
        def step(triples: markov) -> markov:
            ret: markov = set()
            for (a, b, c) in triples:
                for x, y, z in [(a, b, c), (b, c, a), (c, a, b)]:
                    t = (x, y, 3 * x * y - z)
                    if max(t) < MAX: ret.add(t)
            return ret
        while True:
            new = step(cur)
            if new == cur: break
            cur = new
        return sorted({n for triple in cur for n in triple})[:len]
    print(MarkovNumbers(len=42))  # Peter Luschny, Aug 10 2025

Extensions

Name clarified by Wolfdieter Lang, Jan 22 2015

A083140 Sieve of Eratosthenes arranged as an array and read by antidiagonals in the up direction; n-th row has property that smallest prime factor is prime(n).

Original entry on oeis.org

2, 3, 4, 5, 9, 6, 7, 25, 15, 8, 11, 49, 35, 21, 10, 13, 121, 77, 55, 27, 12, 17, 169, 143, 91, 65, 33, 14, 19, 289, 221, 187, 119, 85, 39, 16, 23, 361, 323, 247, 209, 133, 95, 45, 18, 29, 529, 437, 391, 299, 253, 161, 115, 51, 20, 31, 841, 667, 551, 493, 377, 319, 203, 125, 57, 22
Offset: 2

Views

Author

Yasutoshi Kohmoto, Jun 05 2003

Keywords

Comments

A permutation of natural numbers >= 2.
The proportion of integers in the n-th row of the array is given by A005867(n-1)/A002110(n) = A038110(n)/A038111(n). - Peter Kagey, Jun 03 2019, based on comments by Jamie Morken and discussion with Tom Hanlon.
The proportion of the integers after the n-th row of the array is given by A005867(n)/A002110(n). - Tom Hanlon, Jun 08 2019

Examples

			Array begins:
   2   4   6   8  10  12  14  16  18  20  22  24 .... (A005843 \ {0})
   3   9  15  21  27  33  39  45  51  57  63  69 .... (A016945)
   5  25  35  55  65  85  95 115 125 145 155 175 .... (A084967)
   7  49  77  91 119 133 161 203 217 259 287 301 .... (A084968)
  11 121 143 187 209 253 319 341 407 451 473 517 .... (A084969)
  13 169 221 247 299 377 403 481 533 559 611 689 .... (A084970)
		

Crossrefs

Cf. A083141 (main diagonal), A083221 (transpose), A004280, A038179, A084967, A084968, A084969, A084970, A084971.
Arrays of integers grouped into rows by various criteria:
by greatest prime factor: A125624,
by lowest prime factor: this sequence (upward antidiagonals), A083221 (downward antidiagonals),
by number of distinct prime factors: A125666,
by number of prime factors counted with multiplicity: A078840,
by prime signature: A095904,
by ordered prime signature: A096153,
by number of divisors: A119586,
by number of 1's in binary expansion: A066884 (upward), A067576 (downward),
by distance to next prime: A192179.

Programs

  • Mathematica
    a = Join[ {Table[2n, {n, 1, 12}]}, Table[ Take[ Prime[n]*Select[ Range[100], GCD[ Prime[n] #, Product[ Prime[i], {i, 1, n - 1}]] == 1 &], 12], {n, 2, 12}]]; Flatten[ Table[ a[[i, n - i]], {n, 2, 12}, {i, n - 1, 1, -1}]]
    (* second program: *)
    rows = 12; Clear[T]; Do[For[m = p = Prime[n]; k = 1, k <= rows, m += p, If[ FactorInteger[m][[1, 1]] == p, T[n, k++] = m]], {n, rows}]; Table[T[n - k + 1, k], {n, rows}, {k, n}] // Flatten (* Jean-François Alcover, Mar 08 2016 *)

Extensions

More terms from Hugo Pfoertner and Robert G. Wilson v, Jun 13 2003

A038179 Result of second stage of sieve of Eratosthenes (after eliminating multiples of 2 and 3).

Original entry on oeis.org

2, 3, 5, 7, 11, 13, 17, 19, 23, 25, 29, 31, 35, 37, 41, 43, 47, 49, 53, 55, 59, 61, 65, 67, 71, 73, 77, 79, 83, 85, 89, 91, 95, 97, 101, 103, 107, 109, 113, 115, 119, 121, 125, 127, 131, 133, 137, 139, 143, 145, 149, 151
Offset: 1

Views

Author

N. J. A. Sloane, Dec 11 1999

Keywords

Comments

2, 3 and numbers of the form 6m +- 1.
Apart from first two terms, same as A007310.
Terms of this sequence (starting from the third term) are equal to the result of the expression sqrt(4!*(k+1) + 1) - but only when this expression yields integral values (that is when the parameter k takes values, which are terms of A144065). - Alexander R. Povolotsky, Sep 09 2008
For every integer n>2, n is in this sequence iff Product_{k=2..oo} 1/(1 - 1/k^n) = Product_{k=1..n} Gamma( 2 - (-1)^(k*(1 + 1/n)) ). - Federico Provvedi, Nov 07 2024

References

  • Fred S. Roberts, Applied Combinatorics, Prentice-Hall, 1984, p. 256.

Crossrefs

Programs

  • Mathematica
    max = 200; Complement[Range[2, max], 2Range[2, Ceiling[max/2]], 6Range[2, Ceiling[max/6]] + 3] (* Alonso del Arte, May 16 2014 *)
    Prepend[Table[3*n - Mod[ Mod[n, 2] + 1, n], {n, 1, 999}], 2] (* Mikk Heidemaa, Nov 02 2017 *)

Formula

O.g.f.: x*(2 + x + x^3 + 2x^4)/((1+x)*(1-x)^2). - R. J. Mathar, May 23 2008
a(n) = (1/9)*(4*n^3 + 3*n^2 + 1 - Kronecker(-3,n+1)). - Ralf Stephan, Jun 01 2014
From Mikk Heidemaa, Oct 28 2017: (Start)
a(n) = floor((41/21 - (3 mod n))^(-3*n+5)) + 3*n - 4 (n > 0).
a(n+1) = 3*n - ((n mod 2)+1) mod n (n > 0). (End)
a(n+2) = 2*floor((3*n+1)/2) + 1 for n>=1; see (17) in Diab link. - Michel Marcus, Dec 14 2020
Sum_{n>=1} (-1)^(n+1)/a(n) = (7-sqrt(3)*Pi)/6. - Amiram Eldar, Sep 22 2022

Extensions

Name edited by Michel Marcus, Dec 14 2020

A055399 Number of stages of sieve of Eratosthenes needed to identify n as prime or composite.

Original entry on oeis.org

1, 1, 2, 1, 2, 1, 2, 1, 3, 1, 3, 1, 2, 1, 3, 1, 3, 1, 2, 1, 3, 1, 3, 1, 2, 1, 4, 1, 4, 1, 2, 1, 3, 1, 4, 1, 2, 1, 4, 1, 4, 1, 2, 1, 4, 1, 4, 1, 2, 1, 5, 1, 3, 1, 2, 1, 5, 1, 5, 1, 2, 1, 3, 1, 5, 1, 2, 1, 5, 1, 5, 1, 2, 1, 4, 1, 5, 1, 2, 1, 5, 1, 3, 1, 2, 1, 5
Offset: 3

Views

Author

Henry Bottomley, May 15 2000

Keywords

Comments

Primes are known as primes actually one step before a(n): at step k of the sieve, multiples of prime(k) are removed, the smallest integer removed being prime(k)^2; every remaining integer less than prime(k+1)^2 will then never be removed, and it is newly known at step k for those between prime(k)^2 and prime(k+1)^2. For example, at step 3, multiples of prime(3) = 5 are removed and remaining integers after this step are prime up to prime(4)^2 = 49; then, 29, 31, 37, 41, 43, 47 are known as prime at step 3. - Jean-Christophe Hervé, Nov 01 2013

Examples

			a(7)=2 because 7 is not removed by the first two stages of the sieve, but is less than the square of the second prime (though not the square of the first); a(35)=3 because 35 is removed in the third stage as a multiple of 5.
		

Crossrefs

Programs

  • Mathematica
    a[n_ /; !PrimeQ[n]] := PrimePi[ FactorInteger[n][[1, 1]]]; a[n_ /; PrimeQ[n]] := PrimePi[ NextPrime[ Sqrt[n]]]; Table[a[n], {n, 3, 107}](* Jean-François Alcover, Jun 11 2012, after formula *)

Formula

If n is composite, a(n) = A055396(n); if n is prime, a(n) = A056811(n)+1. [Corrected by Charles R Greathouse IV, Sep 03 2013]
a(n) = A010051(n)*(A056811(n)+1)+(1-A010051(n))*A055396(n). - Jean-Christophe Hervé, Nov 01 2013

A316430 Heinz numbers of integer partitions whose length is equal to the GCD of all the parts.

Original entry on oeis.org

1, 2, 9, 21, 39, 57, 87, 91, 111, 125, 129, 159, 183, 203, 213, 237, 247, 267, 301, 303, 321, 325, 339, 377, 393, 417, 427, 453, 489, 519, 543, 551, 553, 559, 575, 579, 597, 669, 687, 689, 707, 717, 753, 789, 791, 813, 817, 843, 845, 879, 923, 925, 933, 951, 973
Offset: 1

Views

Author

Gus Wiseman, Jul 02 2018

Keywords

Comments

The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).
2 is the only even term in the sequence. 3k is in the sequence if and only if k is in A031215. 5k is in the sequence if and only if k = pq with p and q in A031336.

Examples

			Sequence of integer partitions whose length is equal to their GCD begins: (), (1), (2,2), (4,2), (6,2), (8,2), (10,2), (6,4), (12,2), (3,3,3), (14,2), (16,2), (18,2), (10,4), (20,2), (22,2), (8,6), (24,2), (14,4), (26,2), (28,2), (6,3,3).
		

Crossrefs

Programs

  • Mathematica
    Select[Range[200],PrimeOmega[#]==GCD@@Cases[FactorInteger[#],{p_,k_}:>PrimePi[p]]&]
  • PARI
    is(n,f=factor(n))=gcd(apply(primepi,f[,1]))==vecsum(f[,2]) \\ Charles R Greathouse IV, Jul 25 2024

Formula

a(n) << n log^2 n, can this be improved? - Charles R Greathouse IV, Jul 25 2024

A174296 Row sums of A174294.

Original entry on oeis.org

1, 2, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2
Offset: 0

Views

Author

Mats Granvik, Mar 15 2010

Keywords

Crossrefs

Programs

  • Magma
    [n lt 2 select (n+1) else 2 + (n mod 2): n in [0..110]]; // G. C. Greubel, Nov 25 2021
    
  • Mathematica
    Table[If[n<2, n+1, (5-(-1)^n)/2], {n,0,110}] (* G. C. Greubel, Nov 25 2021 *)
  • Sage
    [1,2]+[(5-(-1)^n)/2 for n in (2..110)] # G. C. Greubel, Nov 25 2021

Formula

a(A004280(n)) = 3 for n > 2.
From G. C. Greubel, Nov 25 2021: (Start)
a(n) = a(n-2) for n > 3, with a(0) = 1, a(1) = 2, a(2) = 2, a(3) = 3.
a(n) = (5 - (-1)^n)/2 for n > 1, with a(0) = 1, a(1) = 2.
a(n) = (n+1)*[n<2] + A010693(n)*[n>1].
G.f.: (1_+ 2*x + x^2 + x^3)/(1 - x^2).
E.g.f.: (1/2)*( -exp(-x) - 2*(1+x) + 5*exp(x) ). (End)
Showing 1-10 of 26 results. Next