cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A004282 a(n) = n*(n+1)^2*(n+2)^2/12.

Original entry on oeis.org

0, 3, 24, 100, 300, 735, 1568, 3024, 5400, 9075, 14520, 22308, 33124, 47775, 67200, 92480, 124848, 165699, 216600, 279300, 355740, 448063, 558624, 690000, 845000, 1026675, 1238328, 1483524, 1766100, 2090175
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

Formula

a(n) = C(2+n, 2)*C(2+n, 3) = A000217(n+1)*A000292(n). - Zerinvary Lajos, Jan 10 2006
a(n-1) = Sum_{1 <= x_1, x_2 <= n} x_1*(det V(x_1,x_2))^2 = Sum_{1 <= i,j <= n} i*(i-j)^2, where V(x_1,x_2) is the Vandermonde matrix of order 2. - Peter Bala, Sep 21 2007
G.f.: x*(3+6*x+x^2)/(1-x)^6. - Colin Barker, Feb 09 2012
a(n) = Sum_{k=0..n} Sum_{i=0..n} (n-i+1) * C(k+1,k-1). - Wesley Ivan Hurt, Sep 21 2017
a(n) = A004302(n+1) - A000537(n+1). - J. M. Bergot, Mar 28 2018
From Amiram Eldar, May 29 2022: (Start)
Sum_{n>=1} 1/a(n) = 30 - 3*Pi^2.
Sum_{n>=1} (-1)^(n+1)/a(n) = Pi^2/2 - 24*log(2) + 12. (End)