cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A004311 Binomial coefficient C(2n,n-5).

Original entry on oeis.org

1, 12, 91, 560, 3060, 15504, 74613, 346104, 1562275, 6906900, 30045015, 129024480, 548354040, 2310789600, 9669554100, 40225345056, 166509721602, 686353797976, 2818953098830, 11541847896480, 47129212243960, 191991813933920, 780512175396135, 3167295784216200
Offset: 5

Views

Author

Keywords

Comments

Number of lattice paths from (0,0) to (n,n) with steps E=(1,0) and N=(0,1) which touch or cross the line x-y=5. - Herbert Kociemba, May 24 2004

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 828.

Crossrefs

Diagonal 11 of triangle A100257.
Cf. A001622.

Programs

  • Magma
    [ Binomial(2*n,n-5): n in [5..150] ]; // Vincenzo Librandi, Apr 13 2011
    
  • Mathematica
    Table[Binomial[2*n, n-5], {n, 5, 30}] (* Amiram Eldar, Aug 27 2022 *)
  • PARI
    first(m)=vector(m,i,binomial(2*(i+4),i-1)) \\ Anders Hellström, Aug 17 2015

Formula

a(n) = Sum{k=0..n} C(n, k)*C(n, k+5). - Hermann Stamm-Wilbrandt, Aug 17 2015
-(n-5)*(n+5)*a(n) +2*n*(2*n-1)*a(n-1)=0. - R. J. Mathar, Jan 24 2018
E.g.f.: BesselI(5,2*x) * exp(2*x). - Ilya Gutkovskiy, Jun 27 2019
From Amiram Eldar, Aug 27 2022: (Start)
Sum_{n>=5} 1/a(n) = 6169/840 - 31*Pi/(9*sqrt(3)).
Sum_{n>=5} (-1)^(n+1)/a(n) = 5254*log(phi)/(5*sqrt(5)) - 63059/280, where phi is the golden ratio (A001622). (End)
G.f.: 2F1([11/2,6],[11],4*x). - Karol A. Penson, Apr 24 2024