A004311 Binomial coefficient C(2n,n-5).
1, 12, 91, 560, 3060, 15504, 74613, 346104, 1562275, 6906900, 30045015, 129024480, 548354040, 2310789600, 9669554100, 40225345056, 166509721602, 686353797976, 2818953098830, 11541847896480, 47129212243960, 191991813933920, 780512175396135, 3167295784216200
Offset: 5
References
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 828.
Links
- Seiichi Manyama, Table of n, a(n) for n = 5..1000
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
- Milan Janjic, Two Enumerative Functions
- Milan Janjic and B. Petkovic, A Counting Function, arXiv preprint arXiv:1301.4550 [math.CO], 2013. - From _N. J. A. Sloane_, Feb 13 2013
- Milan Janjic and B. Petkovic, A Counting Function Generalizing Binomial Coefficients and Some Other Classes of Integers, J. Int. Seq. 17 (2014), Article 14.3.5.
- Franck Ramaharo, Statistics on some classes of knot shadows, arXiv:1802.07701 [math.CO], 2018.
Programs
-
Magma
[ Binomial(2*n,n-5): n in [5..150] ]; // Vincenzo Librandi, Apr 13 2011
-
Mathematica
Table[Binomial[2*n, n-5], {n, 5, 30}] (* Amiram Eldar, Aug 27 2022 *)
-
PARI
first(m)=vector(m,i,binomial(2*(i+4),i-1)) \\ Anders Hellström, Aug 17 2015
Formula
a(n) = Sum{k=0..n} C(n, k)*C(n, k+5). - Hermann Stamm-Wilbrandt, Aug 17 2015
-(n-5)*(n+5)*a(n) +2*n*(2*n-1)*a(n-1)=0. - R. J. Mathar, Jan 24 2018
E.g.f.: BesselI(5,2*x) * exp(2*x). - Ilya Gutkovskiy, Jun 27 2019
From Amiram Eldar, Aug 27 2022: (Start)
Sum_{n>=5} 1/a(n) = 6169/840 - 31*Pi/(9*sqrt(3)).
Sum_{n>=5} (-1)^(n+1)/a(n) = 5254*log(phi)/(5*sqrt(5)) - 63059/280, where phi is the golden ratio (A001622). (End)
G.f.: 2F1([11/2,6],[11],4*x). - Karol A. Penson, Apr 24 2024
Comments