cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A004314 a(n) = binomial coefficient C(2n, n - 8).

Original entry on oeis.org

1, 18, 190, 1540, 10626, 65780, 376740, 2035800, 10518300, 52451256, 254186856, 1203322288, 5586853480, 25518731280, 114955808528, 511738760544, 2254848913647, 9847379391150, 42671977361650, 183649923622620, 785613562163430, 3342649210440540, 14154280149473100
Offset: 8

Views

Author

Keywords

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 828.

Crossrefs

Cf. A001622.

Programs

Formula

-(n - 8)*(n + 8)*a(n) + 2*n*(2*n - 1)*a(n - 1) = 0. - R. J. Mathar, Dec 10 2013
E.g.f.: BesselI(8,2*x) * exp(2*x). - Ilya Gutkovskiy, Jun 27 2019
From Amiram Eldar, Aug 27 2022: (Start)
Sum_{n>=8} 1/a(n) = 3941153/360360 - 49*Pi/(9*sqrt(3)).
Sum_{n>=8} (-1)^n/a(n) = 153506*log(phi)/(5*sqrt(5)) - 2380569277/360360, where phi is the golden ratio (A001622). (End)